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A b s t r a c t  

Analys i s  and  model ing of smal l -angle  sca t te r ing  da t a  from sys tems consis t ing of 
colloidal par t ic les  or polymers  in solut ion are  discussed.  The analys is  requi res  applica-  
t ion of  l eas t - squares  methods,  and the basic pr inciples  of  l inear  and  non- l inear  leas t -  
squares  methods  are  summar ized  with  emphas i s  on appl icat ions  in the  ana lys i s  of 
smal l -ang le  sca t te r ing  data .  These include indirect  Four ier  t ransformat ion ,  square-root  
deconvolution,  size d i s t r ibu t ion  de terminat ions ,  and modeling. The inclusion of correc- 
t ions for i n s t rumen ta l  smear ing  effects is also discussed.  The most  common ana ly t ica l  
express ions  for model  form factors and  s t ruc ture  factors a re  summar ized .  An example  
of ana lys i s  of  smal l -angle  neut ron  and X-ray sca t te r ing  d a t a  from block copolymer 
micel les  is given. 

1. I n t r o d u c t i o n  

The article concerns analysis of small-angle scattering data from 
colloidal and polymer systems consisting of particles or molecules in a 
solvent. Only systems with short range order and isotropic scattering 
spectra, for which the scattering intensity is only a function of the 

1 A premous version of this review was used as lecture notes in The Third European Summer School 
on "Scattering Methods Applied to Soft Condensed Matter", Bombannes, France, 1996. 
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modulus of the scattering vector are considered. Both X-ray and neutron 
scattering are treated, however, the more detailed discussion of the 
program implementations, in particular those concerning instrumental  
smearing, have emphasis on neutron scattering. It is the intention that  
the notes can serve as a practical guide in analyzing small-angle 
scattering data. They contain a relatively brief, but self-contained, 
description of linear and non-linear least-squares methods with empha- 
sis on the applications in the analysis of small-angle scattering data. 
The notes also contain a large collection of form factor and structure 
factors, which are convenient to have at hand when analyzing experi- 
mental  data. 

Small-angle scattering data are usually analyzed either by model- 
independent approaches or by direct modeling. Both of these approaches 
require the application of least-squares methods. The model-independent 
approaches may consist of a Fourier transformation of the experimental 
scattering curve, which provides the pair distance distribution function 
p(r) or, equivalently, the correlation function ~(r), where the relation is: 
p(r) = r2~(r). The Fourier transformation is usually done by the Indirect 
Fourier Transformation (IFT) method introduced by Glatter [1,2]. This 
method can be applied for all systems for which the correlations have a 
finite range. It has several advantages compared to a direct Fourier 
transformation, as it allows corrections for instrumental  smearing ef- 
fects and it does not require extrapolations of the data. Thep(r) function 
provides real-space information and comparisons to model calculation 
may provide key information and give suggestions for the structure of 
the particles [2,3]. After interpretation of the p(r) function it may be 
possible to construct a model on an analytical form, which can be fitted 
to the data. For particles with centro symmetry it is possible to go one 
step fur ther  with the model-independent analysis and perform a 
SQuare-root DEConvolution (SQDEC) ofp(r) as described by Glatter, so 
that  the radial scattering length density profile p(r) is obtained [4,5]. 
The information obtained by this procedure would of course also be 
incorporated in later attempts to perform model fits to the data. The 
indirect Fourier transformation requires the application of a linear 
least-squares method, whereas the square-root deconvolution procedure 
requires the application of non-linear least-squares methods. 

For polydisperse systems, the aim of the analysis is to extract the size 
distribution of the particles when a particular shape of the particles is 
assumed. For very dilute systems, this can be done with a free-form size 
distribution [6] by a linear least-squares method, which may include a 
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non-negat iv i ty  constra int  [7]. For systems with  a finite concentrat ion of 
part icles which  in teract  wi th  a hard-sphere  potential ,  the  size distribu- 
tion can also be de te rmined  on a free-form, but  this requires  a non- l inear  
leas t -squares  method [7]. 

For systems wi th  a collection of monodisperse particles, there  exists 
a method  for de te rmin ing  the shape of particles model independent ly  by 
fi t t ing directly to the scat ter ing data.  This requires  tha t  the particles 
have a near ly  homogeneous  distr ibution of scat ter ing length  density.  A 
mult ipole  expansion is used for the shape of the particles and the 
coefficients of this  expansion are  de te rmined  by non- l inear  least- 
squares  methods  [8,9]. The method has  been modified so tha t  it can be 
used for shape  de te rmina t ion  of the components  of ' two-phase'  part icles 
[9], and it has  been applied successfully to the 50S subuni t  of the 
ribosome ofE.  coli [10-12]. 

When  applying the least-squares  methods,  it is impor tan t  tha t  the 
scientist  unde r s t and  the basic principles, so tha t  the computer  programs 
do not ent i re ly  work as a "black box". With some basic unde r s t and ing  it 
is possible to avoid the most  common pitfalls and to unders tand ,  why  
the program 'reacts '  as it does, and perhaps,  if the applied procedure 
fails, to choose another  s t ra tegy which works better.  Section 2 of the 
present  notes gives an overview of the least-squares methods.  Some of 
the  most  common available small-angle scat ter ing model expressions 
are  summar i zed  in Section 3, whereas  an example of model ing of 
smal l -angle  scat ter ing da ta  from block copolymer micelles is given in 
Section 3. 

2. L e a s t - s q u a r e s  M e t h o d s  

There  exist many  excellent books on least-squares methods.  Two of 
these are  the book by Bevington [13] "Data Reduction and Error  Analy- 
sis for the  Physical  Sciences" and the book by Press, F lannery ,  Teukol- 
sky, and Vet ter l ing [14] "Numerical  Recipes". The book by Bevington 
gives a good introduct ion as well as a description of the most  common 
methods  wi thou t  excessive use of mathemat ics .  The book by Press,  
F lannery ,  Teukolsky, and Vet ter l ing describes in addit ion some of the 
numer ica l  aspects and problems when implement ing  the method. It 
should also be noted tha t  this book is very useful when  implement ing  
complex model expressions as it contains a large collection of rout ines  
for special functions. 
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The  leas t - squares  m e t h o d  employs  the  chi -squared  ()~U)function as a 
m e a s u r e  for t he  devia t ion be tween  the  expe r imen ta l  da t a  and  the  model.  
Let/exp(qi), i -- 1,...~N be the  da t a  points  m e a s u r e d  for t he  i n d e p e n d e n t  
var iab le  qi. In  a sca t te r ing  e x p e r i m e n t  IeXp(qi) is t he  m e a s u r e d  in tensi -  
t ies and  qi is the  m odu lus  of the  sca t te r ing  vector. The  count ing  s ta t is t ics  
will give rise to the  s ta t is t ical  unce r t a in t i e s  ~5 i o n  the  da t a  point  IeXp(qi). 
The  chi-squared is def ined as: 

N 
~2 = ~  

i=1 

~ Iexp(qi) --(~i(/m°d(qi) )2 
(1) 

whe re  Im°d(qi) is the  model  in tens i t ies  which  depends  on the  p a r a m e t e r s  
ai, i = 1,...,M. It  is often conven ien t  to consider  the  reduced chi-squared 
~2, which  is given by: 

~2 
(2) Z2r - N - M  

w her e  N - M  is t he  number of degrees of freedom. The o p t i m u m  set  of 
p a r a m e t e r  va lues  for a model  is d e t e r m i n e d  by min imiz ing  Eq. (1). A fit 
w i th  Zr 2 = 1 is cons idered  to be an  ideal  fit. Note  t h a t  for N >> M a fit 
w i th  )~2 = 1 has  'on average '  I leXp(qi ) -/m°d(qi) I = (~i, which  m e a n s  t h a t  
the  devia t ions  are on average  equal  to the  s ta t is t ical  uncer ta in t ies .  A 
more  r igorous  discuss ion of the  chi -squared funct ion can be found in the  
text  books m e n t i o n e d  above. 

2.1 Linear Method 

The  model  in t ens i ty  funct ion is l inear,  if it  can be wr i t t en  as: 

M 
/mod(q) = ~  a~X:k(q) 

k=l 

(3) 

whe r e  Xk(q) is a set  of basis  funct ions.  This  is t he  case for the  indi rec t  
Four i e r  t r a n s f o r m a t i o n  [1,2] for which  the  d is tance  d is t r ibu t ion  funct ion  
is w r i t t e n  as: 
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M 

p(r) = ~. akBk(r) (4) 
k=l 

where  Bk(r) are cubic b splines. These are bell-shaped functions, com- 
posed of piecewise third-order  polynomials. One has 

M 

/mod(q) = 4X f p(r) sin(qr) dr= ~ a~(k(q) 
qr 

k=l 

(5) 

where  

Xk(q) = 4~ f Bk(r) sin(q r) dr (6) 
qr 

Alternat ive  l inear  approaches for performing the IFT have been 
described by Moore [15], Svergun, Semenyuk  and Feigin [16] and 
Svergun [17]. Note tha t  the  max imum entropy method,  which also can 
be used, does give rise to a l inear  problem [18]. 

The de te rmina t ion  of size distr ibutions on a free form is also a l inear  
problem. In this case 

/rood(q) = Ap2 f N(R)F 2(q,R)dR (7) 

where  Ap is the  scat ter ing length densi ty contrast, N(r) is the  size 
dis tr ibut ion and F(q,r) is the  form factor amplitude.  For homogeneous 
spheres:  

4~ 3 3 [sin(qR) - qR cos(qR)] 
F(q,R) = -~  R (qR) 3 (8) 

Setting: 

M 

N(R) = ~_~ akBk(R) (9) 
k=l 

where  Bk(R) are cubic [6] or l inear  [7] b splines, the model in tensi ty  
becomes 
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M 

/mod(q) = ~ a~Xk(q ) 
k=l 

with  

(10) 

Xk(q) = AP 2 f Bk(R)F2(q ,R)dR (11) 

which  demons t ra tes  tha t  this is also a l inear  problem. 
The chi-squared function can be minimized by many  different meth-  

ods, for example by making  a qualified guess on the  values  of the  
pa rame te r s  and then  simply vary  the pa ramete rs  one by one so tha t  
successively lower values of chi-squared are obtained. Such a simple 
(but t ime consuming!) grid search method would work. It would, how- 
ever, be be t te r  to take  advantage  of the general  propert ies of the  
chi-squared function and of the fitting function. 

The m i n i m u m  of chi-squared occurs where  the part ial  derivat ives of 
(1) wi th  respect  to a k are equal to zero: 

~Z2 - 0 for k = 1,...,M 
~ak 

(12) 

Equat ions  (1) and  (3) give: 

E Iexp(qi)- E aj~(qi) 
i=1 j= l  

Xk(x  i) = 0 for k = 1,...,M (13) 

which  is equivalent  to the normal equations: 

M 

,T__., = 13k 
j=l 

(14) 

where  

N 
Xflqi~k(qi) 

i=1 

(15) 
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and 

N 
Iexp(qi~k(q i) 

~k = ~ 2 (16) 
i=1 (~i 

In mat r ix  notat ion 

A .  a = b (17) 

where  [A]ij = aij and [hi k = ~k" 
The values  for a k t ha t  minimize chi-squared is thus  de te rmined  by 

solving a set of l inear  equations.  It should be noted [14,19] t ha t  the  
equat ions  should not  be solved by numer ica l ly  calculat ing the  inverse 
ma t r ix  and  mul t ip ly ing it on both sides of the  equations.  If  the  equat ions  
are  close to being s ingular  (which is not an unusua l  s i tuat ion)  the  
numer ica l  calculations will give an accumulat ion of round-offer rors  and 
the  final solution for a k will not  fulfill the  original equat ion (17). It is 
much  be t te r  to use a more robust  method like Gauss--Jordan el iminat ion 
wi th  pivoting [14,19] for so lv ing  the  equations.  

For es t imat ing  the  errors on aj a basic rule  for accumulat ion of errors  
is applied. For the  function f lxl , . . . ,x  N) of the pa ramete r s  x i with known 
errors  (~(xi): 

N 

(18) 

This equat ion  is valid if the ajs are  independen t  parameters .  If  the  
pa rame te r s  aj are  considered to be functions of the observed intensi t ies  
IeXp(qi) so t ha t  aj(IeXp(ql),...,Iexp(qN)) , then  

N 

i=l 
3Iexp(qi) °3 

(19) 

In order  to calculate the quant i ty  in the brackets,  the  formal mathe-  
mat ica l  solution to (17) is used: 
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M M N t [ J~k[ jTeXp'qi'"~'qi" 

k=l k=l i=1 

(20) 

The derivat ive of this equat ion wi th  respect  to IeXp(qi) , which  in this 
context is considered to be a parameter ,  is then  calculated: 

M aa: Xk(qi) 
a/~Xp(qi) - ~ [A-~Ij~ ~ 

k=l 

Inser t ing  this in (19) gives 

(2i) 

M M 

~2(a) = ~ ~ [A-lijk [A-1]jl 
k=l l=l 

N 

Noting t ha t  [A]jk = ajk = ~_~ 

~ Xk(qi) Xl(qi) 1 

Xj(qi) Xk(qi)/~2i the final result is 

(22) 

i=1 

,52(aj) = [A-1ljj (23) 

which  means  tha t  the square  of the errors  are given by the diagonal  
e lements  of A -1. If  the  reduced chi-squared Z 2 at  the  m i n i m u m  is larger  
t han  one, it is common to set 

g2(aj) = Zr2[A-1]jj (24) 

as this to a cer ta in  extent  takes  into account the short-comings of the  
applied model function and/or systematic  errors in the  data.  

Using  (24) the  errors  on, for example,  p(r) can be es t imated  as 

M M 

(~2[p(r)] = ~ (~2(ak)Bk(r)2 = ~2 ~., [A-1]kkBk(r)2 (25) 

k=l k=l 

This equat ion has  the short-coming tha t  it assumes  t ha t  the ajs are 
independen t  and thus  neglects the covariances of the pa ramete r s  a N. 
Taking this  properly into account [14] modifies the  expression to 

M M 

~2[P (r)] =Xr 2 E E [A-1]klBk(r)Bl (r) (26) 
k=l l=l 
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For  the  indi rec t  Four ie r  t r ans fo rma t ion  [1] the  n u m b e r  of basis  func- 
t ions in Eq. (4) usua l ly  has  to be qui te  large (30-60) in order  to give a 
suff ic ient  resolu t ion  for p(r). However,  this  often resu l t s  in a nea r ly  
s ingu la r  set  of equa t ions  and  large oscil lations in p(r). The  funct ion  is 
expected  to have  a re la t ively  smoo th  behavior ,  and  therefore  a smooth-  
ness  cons t r a in t  on p(r) is applied.  This  is done in such a way  t h a t  the  
n o r m a l  equa t ions  r e m a i n  a l inear  set  of equat ions .  The  express ion  

~2 + LN c is min imized  ins tead  of X2, where  N e is t he  m e a s u r e  of t he  
M-1 

smoothness ,  N c = ~(a j+ l - -a j )  2 + a ~  + a 2 [1,20], and  ~. is a cons tan t  which  
j=l 

can easi ly  be chosen by the  point-of-inflection m e t h o d  [1]. A l t e rna t ive  
m e t h o d s  for choosing ~ can be found in [21]. 

For  d e t e r m i n a t i o n  of size d i s t r ibu t ions  it is physical ly  reasonab le  to 
app ly  a non-nega t iv i ty  cons t ra in t  for N(r) as well as a smoo thnes s  
cons t ra in t .  This  can be done by reduc ing  the  n o r m a l  equa t ions  in a 
sys temat i c  way, so t h a t  only those  t h a t  give non-nega t ive  va lues  are  
kept .  This  approach  also gives a l inear  set  of equa t ions  [22]. 

The  appl ica t ion  of the  smoo thness  cons t ra in t  has  in both  types  of 
appl ica t ions  the  consequence  t h a t  Eq. (26) cannot  be used  for a rel iable 
d e t e r m i n a t i o n  of  the  er rors  on the  d is t r ibu t ion  funct ions.  I t  can in these  
cases be r e c o m m e n d e d  to use  the  Monte  Carlo m e t h o d  [14,19]. In  th is  
m e t h o d  a large set  of addi t iona l  ' exper imenta l '  da t a  sets  ( typically NMC 
= 50) a re  g e n e r a t e d  f rom the  original  da ta  set by add ing  r a n d o m  errors  
to the  or iginal  da t a  sets  of the  s ame  m a g n i t u d e  as those  of the  or iginal  
e x p e r i m e n t a l  data .  These  da t a  sets are  ana lyzed  and  give the  funct ions  
pi(r), i=1,..., NMC and  the  errors  on p(r) are calcula ted as 

NMC 
1 

(~2[p(r)] = ~ ~_, [Pi(r) - p ( r ) ]  2 (27) 

i=l 

This  app roach  au tomat i ca l ly  t akes  into account  the  covar iances  and  it 
can of course also be used  for d e t e r m i n i n g  the  errors  on o ther  p a r a m e t e r s  
der ived  f rom aj. It  should  be noted  t h a t  the  ' exper imenta l '  da t a  only 
e n t e r  t he  r i g h t - h a n d  side of the  no rma l  equat ions .  W h e n  the  G a u s s - J o r -  
dan  e l imina t ion  procedure  is used  for solving the  equat ions ,  t he  di f ferent  
r i g h t - h a n d  sides can be t r ea t ed  s imul taneous ly ,  and  the  equa t ions  have  
to be solved only once [19]. 
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Exper imenta l  scat ter ing data  are always influenced by i n s t rumen ta l  
smear ing,  and it may  be necessary to include corrections for this in the 
da ta  analysis.  Owing to the finite resolution of the i n s t rumen t  the  
sca t te r ing  in a region a round the nominal  scat ter ing vector (q) is probed. 
For smal l -angle  neu t ron  scattering,  the distr ibution of scat ter ing vec- 
tors q can be described by a resolut ion function R((q),q) (see, for example  
Ref. [23]), and the  smear ing  effects can be taken  into account  in the 
model  scat ter ing in tens i ty  by 

M 
/mod((q)) = ~ ak Xk((q}), where  ~:k((q}) = ~ R((q),q) Xk(q)d q (28) 

k=l 

The exper imenta l  da ta  which enter  the expression for chi-squared (1) 
should be wr i t t en  as I((qi)) as they are recorded for the nominal  scatter-  
ing vectors. For small-angle X-ray scat ter ing da ta  recorded using a 
long-slit camera ,  the  smear ing  is calculated using the usual  procedure,  
which  involves weight ing  functions (see, e.g. Ref. [1]). This procedure is 
numer ica l ly  more complicated as th ree  integrals  have to be calculated,  
however ,  the  resul t  is in principle the same as described by Eq. (28) as 
it is the  basis functions which are smeared.  

In most  small-angle  neu t ron  scat ter ing experiments ,  the  da ta  are  
recorded using more than  one ins t rumen ta l  setting. Each set t ing corre- 
sponds to a set of values of the wavelength ,  wave length  resolution, 
collimation and sample-to-detector distance. Therefore each of the Nse t 
set t ings has  its own resolution function Ri((q),q), and it is therefore  
convenient  to wri te  

~2 = N~''tE N(J) (lTP((qi)) - ~J °d((qi}) ) ~.ii (29) 

i=1 j=l 

where  the  index j refers to which data  set is considered. The model 
in tens i ty  is then  

M 

~i°d((q})=~akXk.j((q}), where  Xkj((q})=~Rj((q),q)Xk(q)dq (30) 
k=l 

The corresponding changes to the normal  equat ions ((13)-(16)) consist 
in changing  the summat ions  over i = 1,...,N to a double summat ions  over 
j = 1,...,Nse t and i = 1,...JY(j) and changing qi to (qi). 
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It  is often so t h a t  no t  all da t a  sets are  known  on an  absolu te  scale, 
and  fu r the rmore ,  even if t hey  are, the re  are  typically smal l  (systemat ic)  
e r rors  of a few percen t  in the  scale. As the  errors  f rom coun t ing  s ta t is t ics  
can be less t h a n  one percent ,  the  errors  on the  scales are  qui te  i m p o r t a n t  
w h e n  f i t t ing  the  data .  The  scale factors of the  da t a  sets  should  there fore  
be ad jus ted .  Sve rgun  [24] has  sugges ted  a m e t h o d  for ad jus t ing  the  scale 
of one d a t a  set  w i th  respect  to another ,  which  is s o m e w h a t  complicated:  
t he  n o r m a l  equa t ions  for t he  p rob lem wi thou t  the  smoo thnes s  cons t r a in t  
p lus  an  ex t ra  l inear  equa t ion  for the  scale factor are solved by s ingu la r  
va lue  decomposi t ion  [25]. However ,  a s imple r  approach  can also be used  
[26]. F i r s t  t he  mos t  rel iable da ta  set  is chosen so t h a t  the  o ther  sets can 
be scaled to m a t c h  th is  one. T h e n  the  da t a  sets  are  scaled so t h a t  t hey  
agree  w i th in  10-25% in the  overlap region, and  the  cons t an t  ~. is 
d e t e r m i n e d  by the  point-of-inflection method .  The  va lue  o fk  is kep t  fixed 
whi le  the  scale factors are  opt imized.  I t  should  be noted  t h a t  it is only 
the  ~ks which  d e p e n d  on the  scale factors, and  therefore  it is not  
necessa ry  to recalcula te  (and s m e a r  by i n s t r u m e n t a l  resolut ion)  the  aijs 
a nd  the  basis  funct ions  which  en t e r  ~j. The  scale factors can be ad jus t ed  
re la t ively  fas t  to an  accuracy be t te r  t h a n  0.5% by a s imple  gr id  search  
combined  wi th  a parabolic  approx imat ion  of ~2 close to the  m i n i m u m  
[13,26]. I f  t h r ee  or more  da ta  sets have  been recorded it m a y  be 
necessa ry  to go t h r o u g h  the  da ta  sets  several  t imes  and  ad jus t  scale 
factors  un t i l  t he  p rocedure  is converged.  I t  can be r e c o m m e n d e d  to 
d e t e r m i n e  the  scale factors by th is  p rocedure  before pe r fo rming  least-  
squa res  fit u s ing  analy t ica l  models  as it can save a lot of c o m p u t e r  t ime.  

2.2 Non-linear Method 

If  t he  f i t t ing funct ion  is not  a l inear  funct ion of the  pa r ame te r s ,  t he  
l eas t - squares  p rob lem is said to be non-l inear .  As for the  l inear  me thod ,  
t he  ch i - squared  funct ion  can s imply  be min imized  by a grid search  in 
which  one m a k e s  a qualif ied guess  on the  va lues  of the  p a r a m e t e r s  and  
t h e n  successively and  repea ted ly  opt imizes  the  p a r a m e t e r s  one by one. 
However ,  th is  gr id  search  m e t h o d  is very  t ime  consuming  and  it is often 
a d v a n t a g e o u s  to app ly  more  advanced  methods .  Due to the  non- l inea r i ty  
of t he  f i t t ing  funct ion  all of t he  m e thods  requi re  a set  of s t a r t i ng  va lues  
for t he  pa r a me te r s .  

A me thod ,  which  is be t te r  t h a n  the  grid search  and  also re la t ively  
s imple  is the gradient m e t h o d  also known  as the  steepest descent m e t h o d  
[13,14]. In  this  m e t h o d  one calculates  analyt ica l ly  or more  often numer i -  
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cally, the  gradient  of chi-squared,  ~'Z2]~aj. T h e  search for a new set of 
p a r a m e t e r  values  is done along the negative direction of the  gradient .  
All p a r am e te r s  are  changed s imul taneous ly  and the  new values  a n e  w a r e  

obta ined from the  old set aol d by 

a n e  w ---- aol d + ~ a  = a o l d +  c o n s t a n t  × b (31) 

whe re  b is the  negat ive gradient  ([b] i = -~z2(aold)~ai ) and the constant  
is appropr ia te ly  chosen, so tha t  Z 2 decreases.  The steepest  descent  
me thod  is effective relat ively far away from the  min imum.  As the  
m i n i m u m  is approached it becomes gradual ly  more inefficient. 

A method  which works be t te r  close to the m i n i m u m  is based on a set 
of equat ions  s imilar  to the  normal  equat ions for the  l inear  problem. 
These  equat ions  have  to be solved i terat ively [13,14]. Let  a i be an 
es t imate  of the  pa ramete r s  which is not too far from the m i n i m u m  of~ 2. 
A mul t i -pa rame te r  Taylor expansion of chi-squared around a gives: 

M M ~2Z___~2 
z 2 ( a ' ) = z 2 ( a ) + 2  ~at2. ( a ) ~ t i + 2  20a iOaj (a)Sa i~ i~ tJ  + ' ' "  

i=l i j=l 

- b .  5 a +  1 5a.  A .  5a ~ C 
2 

(32) 

whe re  = Da = a '  - a and 

_ ~ 2 ~ 2  
c = z2(a) [b]i = OZ----~2(a) [Alij - (a) 

~ai  " ~ai  Oaj 
(33) 

Using the  approximat ion in the second line of (32) the  gradient  of ~2 
in a ' can  be es t imated  as 

DZ2 (a')  = A .  5 a  - b 

Oa i 
(34) 

For a" = ami n this gradient  is equal  to zero and one has  the  normal  
equat ions  

A .  5 a  = b ( 3 5 )  
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w h e r e  A and  b are  calculated at  the old value  of a. Thus, one obtains 
(formally) a new es t imate  for a by 

ane w = aol d + 5a = aol d + A -1 • b (36) 

This method  can be applied successively unti l  the  changes  in X 2 are  
negligible. However,  there  is one problem in applying this method  
directly as it requires  t ha t  both the first order  and second order  deriva- 
tives are  available.  It is often only practically possible to calculate the  
der ivat ives  numerical ly .  This is quite t ime consuming as the  calculation 
of the  second order  derivat ive requires  the calculation of M(M-1)/2 
t e rms  and each of these requires  the evaluat ion of the  fit t ing function 
in N values.  It is more efficient [13] to use a first order  Taylor expansion 
of the fi t t ing function/m°d(q,a): 

M 

/m°d(q;a') =/m°O(q;a) + E 

j=l  

~/mod(q;a) M 
Oaj ~:}aj =-/m°d(q;a) + ~ 5ajXj(q;a) 

j=l  

(37) 

whe re  a '  = a + 5a and  

~/m°d(q;a) 
Xj(q;a) - ~aj (38) 

Inser t ing  the  r ight-hand-s ide  of(37) in the expression for chi-squared 
(Eq. (1)), and considering [ieXp(q)-/mod(q;a)] as the  'experimental '  data ,  
it is s t ra igh t  forward to see tha t  the normal  equat ions for 5aj for the  
l inear ized function are  the same as those for aj in the  l inear  problem, 
wi th  [iexp(q) _/mod(q;a)] ins tead ofleXp(q). Hence,  

N [/eXp(q) _/mod(q;a)] Xk(qi;a) N Xd(qi;a)Xk(qi;a) and ~k=~_, 
i=l (~i i=1 ($i 

(39) 

whe re  Xj(q;a) = 3Im°d(q;a)/3aj. A numer ica l  calculation of these deriva- 
tives requi res  only on the  order  o f M  x N calculations. 

The method  wi th  l inearized fit t ing functions works best close to the  
m i n i m u m  of chi-squared,  whereas  the gradient  search is be t te r  fu r ther  
away.  Ideally, the  two methods  should be combined, so tha t  the  methods  
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are  used in the range  where  they are best suited. There  exists an 
approach suggested by Marqua rd t  [27] which smoothly combines the  
two methods.  A pa rame te r  k (not to be confused wi th  the prefactor of 
the  smoothness  measure  in the IFT methods) is used for enhanc ing  the  
diagonal  e lements  of the  mat r ix  [A]ij = aij so tha t  the normal  equat ions  
become 

A' • 5a = b (40) 

wi th  

• = Ic~/j(1 + ~,) for i = j  
aiJ [ ~ j  for iv j (41) 

For ~. small,  the  normal  equat ions are basically unchanged  and the 
method  is efficient close to the min imum.  For ~. large, the normal  
equat ions  reduce to a set of non-coupled equations: 

~'qi] 5a/= ~j fo r j  = 1,...,M (42) 

which  have  the  solutions 

1 (43) 

Noting t ha t  [~j is the  negat ive gradient ,  a comparison wi th  Eq. (31) 
shows t ha t  the  method in this case is the same as the s teepest  descent  
me thod  wi th  the  constant  equal  to 1/(~xzjj). Chi-squared will a lways 
decrease  for sufficiently large values  of ~.. The charac ter  of the  search 
method  is thus  de te rmined  by the  value of ~., and ~. should be large far 
away  from the  m i n i m u m  and small  close to the min imum.  Marqua rd t  
[27] has  designed the  following procedure: 

. 

2. 
3. 
4. 
5. 
6. 

Calculate  ~2(a). 
Set k = 0.001. 
Calculate  A and b. 
Calculate  A' for the  cur ren t  X and de te rmine  5a. 
If ~2(a + 5a) > )~2(a), mult iply )~ by 10 and repeat  (4). 
I fz2(a + 5a) < z2(a), divide ~ by 10, t ake  a + 5a to be the cur ren t  
a and repea t  (3). 
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The iterations are continued until the decrease ofx 2 becomes negligible. 
It should be noted that  the normal equations, as for the linear problem, 
should be solved using a numerically stable method like the Gauss-Jor- 
dan elimination procedure [14]. 

The s tandard errors on the parameters aj can be estimated as for the 
l inear problem: 

2 - 1  (~(aj) = X r [ A  ]jj (44)  

However, this method only works if the fitting function is not strongly 
non-linear and if the parameters are not strongly correlated. Another 
and more reliable approach is to determine (~(aj) as the value for which 
chi-squared increases by one, when aj is fixed at aj + g(aj) and the other 
parameters  are optimized [13]. If the reduced chi-squared is not equal 
to one for the optimum values of the parameters,  the increase in 
chi-squared should be taken as X2 at the minimum instead of one. The 
advantage of this method is that  it takes into account the correlation 
between the parameters.  

It should be noted that  the method by Marquardt  [27] for optimizing 
chi-squared may not work for highly non-linear fitting functions with 
significant correlations between the fitting parameters.  For such prob- 
lem it can be recommended to use the simple grid search in which the 
parameters  are optimized one by one repeatedly. This approach has the 
advantage that  it always works although it is very time consuming. The 
grid search may be able to bring the parameter  values sufficiently close 
to the optimum values, that  the method of Marquardt  can be used. 

The inst rumental  smearing effects should, as discussed for the linear 
problem, be included in the calculation of the model function. For X-ray 
scattering in the long-slit geometry this is done using the weighting 
functions [28] and performing three numerical integrations. This is 
quite time-consuming and makes it difficult to perform fits of compli- 
cated model functions. 

For small-angle neutron scattering the model function can be written 
a s  

r d¢y(q) Im°d((q))= J R((q),q) ~-~ dq (45) 

where d~(q)/d~2 is the ideal scattering intensity (the cross section, see 
next section), and R((q),q) is the resolution function described in the 
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prev ious  section. I f  several  i n s t r u m e n t a l  se t t ings  have  been  used  for 
record ing  t he  data ,  th is  of course has  to be t a k e n  into account.  

The  ac tua l  calcula t ion of the  in tegra l  in (45) is done numer ica l ly .  For  
smal l -ang le  n e u t r o n  sca t te r ing  exper iments ,  the  reso lu t ion  funct ion  is 
well  a p p r o x i m a t e d  by a Gauss ian  funct ion  [23,29,30] and  only about  10 
poin ts  is r equ i red  for ca lcula t ing  the  integral .  In  an  efficient imp lemen-  
t a t ion  [31] the  resolu t ion  funct ion is ca lcula ted once and  for all in the  
be g inn ing  of the  p rogram,  and  saved for la ter  use. In  this  way  unneces -  
sa ry  r e p e a t e d  calcula t ions  are  avoided. I t  should  also be noted  t h a t  
a l t h o u g h  only 10 points  are requ i red  in the  convolution,  it m e a n s  t h a t  
t he  cross section should  be eva lua ted  for 10 × N values ,  whe re  N is t he  
n u m b e r  of m e a s u r e d  points.  I f  the  express ions  for t he  cross sect ion are  
complex,  t he  calcula t ion t imes  can be grea t ly  r educed  by m a k i n g  use  of 
m a s t e r  curves  and  in te rpo la t ions  [29]. 

3. M o d e l s  

In  th is  sect ion some of the  mos t  common  express ions  for form factors 
and  s t r u c t u r e  factors will be reviewed.  I t  is imprac t ica l  to give all t h e  
m a t h e m a t i c a l  express ions  in the  p re sen t  notes,  and  for some of the  
mode ls  only the  references  to the  or iginal  papers  are  given. The  r eade r  
is encouraged  a lways  to look into the  original  papers  in order  to check 
t he  r ange  of val id i ty  of t he  express ions  (and for checking for possible 
t yp ing  er rors  in the  p re sen t  notes). 

The  di f ferent ia l  sca t t e r ing  cross section dc(q)/d~2 of a s ample  can be 
def ined  as the  n u m b e r  of sca t te red  neu t rons  or pho tons  per  un i t  t ime,  
re la t ive  to the  inc iden t  flux of neu t ron  or photons ,  per  un i t  solid angle  
a t  q per  u n i t  vo lume  of the  sample .  The  flux is the  n u m b e r  of n e u t r o n  
or pho tons  per  un i t  t ime  and  per  un i t  a rea  at  the  sample  posit ion. I t  is 
conven ien t  to use  the  cross section as it does no t  depend  on the  form or 
t r a n s m i s s i o n  of the  sample .  

For  a mono-d isperse  collection of (spherical ly symmet r ic )  par t ic les  
t he  sca t t e r ing  cross section can be wr i t t en  as 

d(~(q) _ nap2 V2 p(q) S(q) (46) 
d ~  

w h e r e  n is t he  n u m b e r  dens i ty  of part icles,  Ap is t he  difference in 
sca t t e r ing  l eng th  dens i ty  be tween  the  part icles  and  the  so lvent /matr ix ,  
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V is the  vo lume  of  the  part icles,  P(q) is the  part ic le  form factor and  S(q) 
is t he  structure factor. The form factor describes the  s t r uc tu r e  of t he  
par t ic les  and  fulfils P(q = 0) = 1. The  s t ruc tu re  factor describes the  
in te r fe rence  of sca t t e r ing  from different  part icles  and  conta ins  informa-  
t ion on t he  in te rac t ion  be tween  the  particles.  For  very  d i lu te  sys t ems  
S(q) = 1 and  the  s t r uc tu r e  factor can be neglected.  

An  a l t e rna t ive  approach  is to define the  cross section per  un i t  mass  
of solute  in s t ead  of per  un i t  vo lume  of the  sample.  This  cross section can 
be w r i t t e n  as 

d(~m(q) _ 1 Ap 2 M2 P(q)S(q) = Ap 2 MP(q)S(q) (47) 
dr2 M 

w he r e  M is t he  molecu la r  mass  of a part icle  and  Apm is the  sca t t e r ing  
l eng th  difference per  un i t  mass  of the  solute. The  factor  1/M is t he  
n u m b e r  of par t ic les  per  un i t  m a s s  of solute. 

The  above express ions  [46,47] implici t ly a s s u m e  spher ica l  s y m m e t r y  
of the  par t ic le  shape  and  the  in teract ions .  For anisotropic  ident ical  
par t ic les  the  cross section is 

- AP2 V2 Fi(q,ei 12 + Z Fi(q,ei) Fj(q,ej) Sij(q , el, ej) 
ij 

(48) 

w he r e  the  s u m s  are over all par t ic les  in the  sample  and  Fi(q,e i) is t he  
a m p l i t u d e  of the  form factor for the  i th  part icle  wi th  o r ien ta t ion  given 
by the  u n i t  vector  e i. The  Sij(q,el,e j) funct ions  are  the  par t ia l  s t r u c t u r e  
factors  which  depend  on or ienta t ions .  Note  t h a t  t he  first  t e r m  in Eq. 
(48) is j u s t  t he  o r ien ta t iona l  averaged  form factor: P(q) - (F2(q))0 . 

For  par t ic les  wi th  only a smal l  anisotropy,  it can be a s s u m e d  t h a t  t he  
in t e rac t ions  are  i n d e p e n d e n t  of  the  or ien ta t ion  and  given by the  average  
size of t he  part icles.  This  leads to the  decoupling approximation [32]. 

do(q) 
d ~  - Ap2 V2p(q)[1 + [3(q)(S(q) - 1)] (49) 

whe r e  

~(q) = (F(q)) 2 / (F2(q))o (50) 
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and  S(q) is t he  s t ruc tu re  factor calcula ted for the  average  part ic le  size. 
For  polydisperse  sys t ems  it is also not  possible to wr i te  the  sca t t e r ing  

cross section as p roduc t  of a form factor and  a s t ruc tu re  factor. In  th is  
case the  sca t t e r ing  cross section has  the  form: 

de(q) 
d g / -  Ap2 D(R) V(R) 2 F(q,R) 2 dR 

+ ~ f D(R)V(R)D(R')V(R')F(q,R)F(q,R')S(R,R',q)dRdR' 
0 0 

(51) 

w h e r e  D(R) is the  n u m b e r  size d is t r ibut ion,  V(R) is the  vo lume  of a 
par t ic le  wi th  r ad ius  R and  form factor F(q,R), and  S(R,R',q) are  par t ia l  
s t r u c t u r e  factors. 

For  sys t ems  wi th  smal l  polydispersi t ies ,  a decoupl ing  app roach  simi- 
lar  to the  one for anisotropic  par t ic les  [32] can be used.  I t  is a s s u m e d  
t h a t  in te rac t ions  are i n d e p e n d e n t  of size. Wi th  th is  one obtains:  

d(~(q) 
dr /  - Ap2 <V2p(q)> [1 + ~(q)(S(q) - 1)] (52) 

w h e r e  (VeP(q)) = ~ D(R)V(R)2F(q,R)2dR and  

(53) 

and  S(q) is the  s t r uc tu r e  factor ca lcula ted  for the  average  part ic le  size. 
Note  t h a t  Eqs. (51,52) can also be used  for s l ight ly anisotropic  part icles,  
if Fi(q,R) is replaced by (Fi(q,R)} o and  Fi(q,R) 2 is replaced by (Fi(q,R)2}o . 

It  is also possible to use  a local monodisperse approximation for 
inc lud ing  the  effects of polydispers i ty  [7]. In  this  approach  it is a s s u m e d  
t h a t  a par t ic le  of a cer ta in  size., is a lways  s u r r o u n d e d  by par t ic les  wi th  
the  s a m e  size. Fol lowing this  the  sca t te r ing  is app rox ima ted  by t h a t  of 
monod i spe r se  sub-sys tems  we igh ted  by the  size dis t r ibut ion:  

de(q) _ AP 2 f D(R)V(R)2F(q,R)2S(q,R)dR 
dgl 

(54) 



J.S. Pedersen/Adv. Colloid Interface Sci. 70 (1997) 171-210 189 

in which  it has  been indicated tha t  the  s t ruc ture  factor is for particles 
of size R. This approach works bet ter  t han  the decoupling approximat ion 
(52) for sys tems wi th  larger  polydispersit ies and h igher  concentrat ions.  

3.1. Form Factors 

In the  following it will be assumed tha t  the  particles are r andomly  
or iented in the  sample  so tha t  the theoret ical  form factors for anisotropic 
part icles have to be averaged over orientation.  Note tha t  for spherical  
objects the  form factor can be wr i t ten  as P(q) = F2(q), where  F(q) is the  
ampl i tude  of the  form factor. 

(1) Homogeneous sphere 
The form factor of a homogeneous sphere  was  calculated a l ready in 

1911 by Lord Rayleigh [33]. For a sphere  with  radius  R: 

3 [sin(qR) - qR cos(qR)] 
FI(q,R) - 

(qR) 3 
(55) 

(2) Spherical shell 
This form factor is obtained by subtrac t ing  the empty  core wi th  a 

proper  weight ing  by the  volumes: 

V(R1)FI(q ~ I) - V(R2)FI(q,R2) 
F2(q) - V(R1 ) - V(R2) (56) 

where  V(R) = 4~R3/3 and R 1 and R 2 are  the outer  and inner  rad ius  of 
the  shell, respectively. An infinitely thin  shell wi th  radius  R has  the  
form factor F2(q)' = sin(qR)/(qR). 

(3) Spherical concentric shells 
This form factor is a general izat ion of the  shell form factor. Let  Ri, i 

= 1JV be the  radi i  of the  shells and Pi be thei r  sca t ter ing densities.  With 
this: 

1 
N 

pl V(R1)FI(q,R1) + ~., (Pi - Pi-1)V(Ri)FI(q,Ri) 
i=2 

(57) 
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where M 3 is the scattering mass or scattering volume of the particle, 
given by: 

N 

M 3  = PlV(R1) + ~ V ( R i ) ( P i  - Pi-1) (58)  

i=2 

(4) Particles consisting of  spherical subunits 
The expression was derived by Debye in 1915 [34]. For a particle 

consisting of P subunits: 

P 
1 sin(qrij) 

P4(q) = M2 ij=l ~ M3(i) M3(]') F3(q'i) F3(qJ) qrij (59) 

where F3(q,i) and M3(i) are the form factor and scattering mass of the 
ith particle, respectively, rij is the distance between the centers of the 
ith and t h e j t h  subunit, and 

P 

M 4 = ~ M3(i) 
i=1 

(60) 

(5) Ellipsoid of revolution 
This expression was determined by Guinier [35]. The averaging over 

orientations has to be done numerically. For the semi axes R~R,aR: 

~12 

P5(q,R,e) = ; F2[q,r(R,e,cz)l sin a da  
0 

(61) 

where r(R,e,a) = R(sin2a + e2cos2{~) 1/2. It is straight forward to generalize 
(61) for concentric elliptical shells. Fl(q,r) has to be replaced by F3(q) in 
which the volumes are V(R) = 4hER3/3. Note, that  the different shells 
can have different values of ~.. The form factor of an infinitely thin 
elliptical shell is given by (61) with Fl(q,r) replaced by F2(qr)'. 

(6) Tri-axial ellipsoid 
For this object two numerical integrations have to be performed in 

order to get the orientational average. For the semi axes a,b,c [36]: 
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¢ / 2  ~ / 2  

P6(q,a,b,c)= 2 ~ ~ F2[q,r(a,b,c,a,~)] sin adad~  (62) 
0 0 

where r(a,b,c,a,~) = [(a 2 sin2~ + b2cos2~) sin2a + c2cos2a] 1/2. The form 
factor for the tri-axial ellipsoid can be generalized in the same way as 
(61) for tri-axial ellipsoids consisting of concentric shells. The form factor 
of an infinitely thin elliptical shell is given by (62) with Fl(q,r) replaced 
by F2(qr)'. 

(7) Cube and rectangular parallelepipedons 
Two orientational averages have to be performed. For the edge 

lengths a,b,c [37]: 

P7(q,a,b,c) = 
(63) 

~12 ~12 
2 ; ~ sin(qa sin~ cos~) sin(qb sin(~ cos~) sin(qc cos(x) sina d~ dR 

qa sin(x cos[~ qb sina sin[~ qc cos~ 
0 0 

(8) Truncated octahedra 
The equations for an oriented particle were given by Hendricks, 

Schelten and Schmatz [38]. The orientational average has to be done as 
in Eq. (63). 

(9) Faceted sphere 
The equations for an oriented particle were given by Dubey [39] (see 

also Ref. [40]). The orientational average has to be done as in Eq. (63). 

(10) Cube with terraces 
The equations for an oriented particle were given by Rodriguez, 

GSmez Sal, Moreno, de Geyer, and Janot [41]. The orientational average 
has to be done as in Eq. (63). 

(11) Cylinder 
The expression for a cylinder with radius R and length L was given 

by Fournet [42]. 

~i212Bl(qR sina) sin((qL cosa)/212 
Pl l (q)=  o L q - R ~  ( ~ c o s - - ~  J sinad(z (64) 



192  J.S. Pedersen /Adv. Colloid Interface Sci. 70 (1997) 171-210 

where B l(x) is the first order Bessel function. An expression for cylinders 
consisting of concentric shells can be constructed by an approach similar 
to the one used for spherical particles. The form factor of an infinitely 
thin cylindrical shell with closed ends is given by (64) with the terms in 
the square brackets replaced by 2B0( q R sin ¢z) cos [(qL cos a)/2]. 

(12) Cylinder with elliptical cross section 
This expression was given by Mittelbach and Porod [43] for a cylinder 

of length L and with cross-section semi axes a and b: 

7 t / 2  ~t /2  ~- 

2 ~ f ]2Bl(qr(a,b,¢,c~) sin((qL cos(x)/2)- dO sincx da (65) 
P12(q) = ~ 0 0 L qr(a,b,¢,cO ((qL cosa)/2) 

where r(a,b,O,a) = [a2sin20 + b2cos20] 1/2 sins. An expression for cylinders 
consisting of concentric shells with elliptical cross section can be con- 
structed by an approach similar to the one used for spherical particles 
and for tri-axial ellipsoids. The shells can have varying eccentricities 
(a/b). 

(13) Cylinder with spherical end-caps 
The equations were given by Cusack [44]. Expressions for a shell 

particle were also given. 

(14) Infinitely thin rod 
The expression was determined by Neugebauer [45]: 

P14(q) = 2Si(qL)/(qL) - 4 sin2(qL/2)/(q2L 2) 

where 

(66) 

X 

Si(x)=~ t - l s i n t d t  
0 

and L is the length. 

(67) 

(15) Infinitely thin circular disk 
The expression was determined by Kratky and Porod [46]" 

2 [ Bl(2qR)- 
P14(q) = q2R2 1 qR (68) 
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where  R is the  radius of the disk. 

(16) Fractal aggregates 
An empirical  expression for a mass fractals consisting of spheres with 

a radius R has been given by Teixeira [47]: 

P16(q) = 1+ )D [1+ 1/~-q2~]~_1)/2 s in [ (D-  1) tan-l(q~)] F2(q) (69) 

where  D is the  fractal dimension, ~ is a cut-off length for the  fractal 
correlations, and F(x) is the  gamma function. (Note tha t  expressions for 
fractal surfaces have been given by Bale and Schmidt  [48].) 

(17) Flexible polymers with Gaussian statistics 
Flexible polymer chains which are not self-avoiding obey Gaussian 

statistics. Debye [49] has calculated the  form factor of such chains: 

P17(q) = 2[exp(-u) + u - 1]/u 2 (70) 

wi th  u = (/?22) q2, where  (R 2) is the  ensemble average radius of gyration 
squared:  (R~) = (Lb)/6, where  L is the  contour length and b is the 
statist ical (Kuhn) segment  length. 

(18) Flexible self-avoiding polymers 
Empirical  expressions have been given by Utiyama,  Tsunash ima  and 

Kura ta  [50]. The parameters  should be taken as e = 0.176, t = 2/(1-~), 
and s = 2.90 (see Ref. [51] which also contains a simple approximation). 

(19) Semi-flexible polymers without self-avoidance 
Numerical  interpolat ion formulae for the  Kra tky-Porod model [52] 

have been given by Yoshizaki and Yamakawa [53]. These have recently 
been corrected using results  from Monte Carlo s imulat ions [51]. 

(20) Semi-flexible polymers with self-avoidance 
Numerical  interpolat ion formulae have been given by Pedersen and 

Schur tenberger  [51]. The results  are given for R/b = 0.1, where  R is the  
cross section radius  and b is the Kuhn length. This corresponds to a 
reduced binary cluster integral  of 0.3, which is similar  to the value found 
for polystyrene in a good solvent. 
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(21) S tar  polymer with Gaussian statistics 
The expression was given by Benoit [54]. For a star  with f arms: 

_ 2 [ _ [ l _ e x p ( _ v ) ] + ~ [ l _ e x p ( _ v ) ] 2  ] (71) P21(q) - fv 2 v 

with v = u2f/(3f-2), and u = <R2>q 2, where  <Rg2> is the  ensemble average 
radius  of gyration squared of an arm. 

(22) Star-burst  polymer with Gaussian statistics 
Expressions have been given by Burchard and Kajiwara [55] and by 

H a m m o u d a  [56]. The results  are obtained by summat ion  of geometrical  
series. However, it cannot  be recommended to use these  as the perform- 
ance of the  sums introduces singularities. It is bet ter  to use the  expres- 
sions before the  sums are performed [57]. 

(23) Regular comb polymer with Gaussian statistics 
Expressions have been given by Casassa and Berry [58]. 

(24) Arbitrari ly  branched polymers with Gaussian statistics 
The form factor for P subchains can be wri t ten  as [57]: 

P24(q) = 1 p~P17(q,Li) + 2 ~ .  piPj~(q,Li)~(q,Lj) exp(--q2diy) (72) 
i>j 

where  <Re) in P17(q,Li) is calculated for Li, the  contour length of the  i th 
subchain. Pi is the  total excess scat ter ing length of the  i th subchain. 
Fur thermore ,  

w(q,L i) = [1 - exp(-u)]/u (73) 

where  u = <R2>q 2. The parameter  d 2. = Lijb , where  Lij is the  separat ion 

in contour length  between the s tar t ing points of the i th and the j t h  
P 

subchains.  The seat tering mass M24 is given by M24 = ~ Pi • 

i=1  

(25) Sphere with Gaussian chains attached 
The expressions have recently been derived by Pedersen and Ger- 

s tenberg [59]. For a sphere with radius R and total excess scat ter ing 
length  Ps with N c at tached chains of contour length L: 
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2 2 
P25(q) = M225 [psF1 (q,R) + Ncp2cP17(q,L) + 

Nc(N c - 1)p2cSec(q) + 2NcPsPcSsc(q) l 

with: 

Ssc(q) = Fl(q~)~g(q,L) - -  
sin(qR) 

qR 

and 

(74) 

(75) 

Scc(q ) = ~( q,L )2 [ si~RR) ]2 (76) 

The scattering mass is: M25 = Ps + NcPc, where Pc is the total excess 
scattering length of a single chain. 

For non-penetrating chains and R >> Rg, the form factor is approxi- 
mately given by Eq. (74) with R in Eqs. (75,76) replaced R + Rg in the 
sin(x)/x terms. (Rg is the root-mean-square radius of gyration of a chain.) 

(26) Ellipsoid with Gaussian chains attached 
An ellipsoid of revolution is considered with radius R, eccentricity ~, 

and total excess scattering length Pe with N c chains of contour length L 
and total excess scattering length Pc. The form factor is [57]: 

1 [PeF~ (q,R) + Ncp2P17(q,L) + P26(q) = ~ " ~  2 2 

Nc(N c _ 1)p2 Scc(q)ell + 2NcPsPeSes~l(q)] (77) 

with: 

n/2  

Sse/~q) = ~g(q,L) f Fl[q,r(R,e,a )] 
0 

and 

sin[qr(R,e,a)] 
qr(R,e,~x) 

n / 2 ~  .-~2 
f Isin[zr(R,e,a)ll 

SecZJ(q)=~(q'L'b)2 o L qr(R,e,a) J 

sina da (78) 

where r(R,~,a) = R(sin2a + e 2 cos2a) 1/2 and M26 = De + NcPc is the total 
scattering mass. 

sina d¢z (79) 
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For non-penet ra t ing  chains and R and Re >> Rg, the  form factor is 
approximately given by Eq. (77) with r(R,e,a) in Eqs. (78,79) replaced 
by r(R,e,a) + Rg in the  sin(x)/x terms. 

(27) Cylinder with Gaussian chains attached 
A cylinder is considered with radius R, length Lcyl, and total excess 

scat ter ing length  Pcyl with Nc chains of contour length L and total excess 
scat ter ing length Pc. The form factor is [57]: 

1 [PcylF11(q,R ) +Ncp2P17(q,L) + P27(q) = ~27  2 2 

_ cy 2NcPcPcylSsc~q)] Nc(N ~ 1)p2 Sc c [q) + cy 

with: 

(80) 

SCyl(q) = ~(q,L) x 

(81) 

~/2 2Bo(qRsin~) cos [(qL cosc0 / 2] s ins d(~ 
2B l(qRsinc0 sin [(qLcos(~) / 21] 

0 qRsin(x (qL cos(~)/2) 

and 

~ / 2  

cyl Scc (q) = ~(q,L,b) 2 ~ {2Bo(qR sins)  co~[(qL cos~)/2]} 2 sin(z d(z 

0 

(82) 

The scat ter ing mass is: M27 = Pcyl + NcPc. 
For non-penet ra t ing  chains and R and L >> Rg, the  form factor is 

approximately given by Eq. (80) with R replaced by R + Rg and L 
replaced by L + 2Rg in the Bo(x) cos(y) terms in Eqs. (81,82). 

3.2. Structure factors 

There are only very few cases for which the s tructure factor can be 
calculated analytically. Most of the  available results  have been obtained 
from liquid s tate  theory for particles with spherical symmetry  interact- 
ing wi th  a spherically symmetr ic  potential. The liquid state theory 
combines the  Orns te in-Zern ike  integral  equat ion with an approximate 
closure relat ion tha t  relates the interaction potential  to the direct 
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corre la t ion  funct ion  (see e.g. Ref. [60]). I f  the  equa t ions  canno t  be solved 
analyt ical ly ,  it is possible to obta in  numer i ca l  resu l t s  for t he  s t r u c t u r e  
factor. In  th is  case a closure re la t ion  can be chosen which  gives the rmo-  
dynamica l l y  self-consis tent  resul t s  [61,62]. 

(1) Hard-sphere potential 
The  par t ic les  in te rac t  wi th  the  ha rd - sphe re  rad ius  RHS and  have  a 

h a r d - s p h e r e  vo lume  fract ion )l. The  express ions  for S(q) have  been 
ca lcu la ted  w i th  the  Pe rcus -Yev ick  approx ima t ion  for the  closure rela- 
t ion (see e.g. [63]): 

1 
Sl(q) = 1 + 24HG(RHs q) /(RHs q) 

(83) 

In  th is  equat ion:  

G(A) = a(s in  A - A cos A)/A 2 

+ ~(2A sinA + (2 - A  2) cosA - 2 /A  3 

co,  + co,  + sin>, + 

(84) 

and  

(~ = (1 + 2TI) 2 /(1 -Ti) 4 

=-6q(1 + ~ / 2 )  2 / (1  -TI) 2 (85) 

$ = TIc¢ 12 

(2) Sticky hard-sphere potential 
The  model  was  in t roduced  by Baxte r  [64]. The  par t ic les  have  a 

h a r d - s p h e r e  r ad ius  RHS and  a de l ta  funct ion  a t t rac t ive  po ten t ia l  at  t he  
surface.  The  s t ick iness  of the  par t ic les  is given by the  p a r a m e t e r  x. The  
express ions  for t he  s t ruc tu re  factor can be ca lcula ted  wi th  the  P e r c u s -  
Yevick app rox ima t ion  for the  closure re la t ion (see for example ,  [65,66]). 
For  a h a r d - s p h e r e  vo lume  fract ion ~ and  ~ = 2qRHs 

1 
S2(q) - A2 + B2 (86) 
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w h e r e  

{ (sinK-~ccos¢) (1-cosK) K ~ _ ~ }  
A = 1 + 1 2 1 1  a rc 3 +[3 ~c 2 - 1 2  

a n d  

( ~ / 2 - ~ s i n ~ : + l - c o s ~ )  
B = 12T1 a K3 

+ ~ (K - s in  ~c) X (1 - cos re) l 
I~ 2 12 J 

F u r t h e r m o r e ,  

X = Min{6[ '~ /n  + 1 / (1  - TI)] + {36[x/n + 1 / (1  - 1 ] ) ] }  1/2} 

~t = ~.~(1 - 13) 

(1 + 2D - p) 
a - (87) (1 - T1) 2 

_ (-3T1 + p-) 

2(1 - T1) 2 

(3) Screened Coulomb potent ial  
T h e  pa r t i c l e  i n t e r a c t i o n  is desc r ibed  by t h e  h a r d - s p h e r e  r a d i u s  RHS 

a n d  a n  i n t e r a c t i o n  p o t e n t i a l  g iven  by: 

CB Z2 exp [-K(r - 2RHs )] 
V(r) - (88) 

(1 + KRHs) 2 

for r > 2RHs. C B = e2/(4ne), w h e r e  e is t he  p e r m i t t i v i t y  of t he  so lvent ,  e 
t h e  e l e m e n t a r y  charge ,  Z t h e  n u m b e r  of  c h a r g e s  pe r  par t ic le ,  a n d  • is 
t h e  i n v e r s e  D e b y e - H t i c k e l  l eng th .  

T h e  s t r u c t u r e  fac tor  h a s  been  ca l cu l a t ed  in  t he  M e a n - S p h e r i c a l  
A p p r o x i m a t i o n  (MSA) a n d  t he  exp re s s ions  can  be f o u n d  in  Ref. [67]. T h e  
r e s u l t s  w o r k  wel l  for h i g h  to m e d i u m  concen t r a t i ons ,  b u t  t h e  pa i r  
co r r e l a t i on  func t i on  becomes  u n p h y s i c a l  for low concen t r a t i ons .  A b e t t e r  
r e s u l t  is o b t a i n e d  by  a r e s ca l i ng  of  t he  h a r d - s p h e r e  r a d i u s  as  de sc r ibed  
by  H a n s e n  a n d  H a y t e r  [68]. Th i s  p r o c e d u r e  is k n o w n  as  t he  Resca l ed  
M S A  (RMSA).  
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It is also possible to obtain structure factors from thermodynamically 
self-consistent approaches [60,61,69]. However, these have the problem 
that  the integral equations have to be solved numerically (and itera- 
tively) and this makes the applications quite time consuming. 

(4) Hard-sphere potential, polydisperse system 
Vrij [70] has given a solution for polydisperse hard spheres for an 

arbitrary size distribution. It is relatively straight forward to implement 
it in a computer program, as it only requires the calculation of certain 
averages of products of form factors and trigonometric functions weighted 
by the size distribution. The expressions can be found in the paper by Vrij. 

(5) Sticky hard-sphere potential, polydisperse system 
A solution within the Percus-Yevick approximation has been given 

by Robertus, Phillipse, Joosten and Levine [71]. This solution is for 
arbi t rary size distributions. In order to obtain the solution a set of 
equations quadratic in the parameters have to be solved numerically. 

(6) Screened Coulomb potential, polydisperse system 
The solution in the MSA has been given by Blum and Hoye [72] and 

Blum [73]. Ruiz-Estrada, Medina-Noyola and N~ingele [74] have given 
a procedure for making a computer implementation using the rescaled 
mean-spherical approximation. 

The implementation of a thermodynamically self-consistent (numeri- 
cal) approach based on the closure relation of Rogers and Young [61] has 
been described by D'Aguanno and Klein [60,75]. 

(7) Cylinders 
The scattering can be calculated in the random phase approximation 

(RPA) [76]. The structure factor for cylinders of length L and radius R, 
with L >> R is [77]: 

(d(~(q)~ = Pll(q) 
[ ~ ) 7  npc~yl (1 -F VPil(q)) (89) 

where v is proportional to the concentration of the cylinders, Pcyl is the 
total scattering length of a cylinder, and n is the number density. 

(8) Solutions of polymers 
The scattering can be calculated in the random phase approximation 

(RPA). The structure factor is [76,78]: 
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( ~ /  = P17(q) 
; np2 (1 + ve17(q)) (90) 

where v is proportional to the polymer mass concentration, to the 
contour length and to the strength of the excluded volume interaction. 
Pc is the total scattering lengtlh of a chain. The RPA is only a good 
approximation for high polymer concentrations. At lower concentrations, 
it can be recommended to use Eq. (90) with P17(q) replaced by Pls(q), and 
with the parameters normalized, so that Eq. (90) gives the forward 
scattering (intensity at q = 0) and the correlation length predicted by 
renormalization group theory [79]. 

4. An application: block copolymer micel les  

In this section an example of an application is given. It involves both 
indirect Fourier transformation, square-root deconvolution, modeling, 
and least-squares optimization of a model. Both neutron and X-ray 
small-angle scattering (SANS/SAXS) data are discussed. 

The example concerns a block copolymer in a solvent. It is a tri-block 
and consists of two end blocks of poly(ethylene oxide) (PEO) and a 
central  block of poly(propylene oxide) (PPO). The composition is 
EO25PO40EO25 and the molecular weight is 4500 Da. The molecular 
weights are 2300 Da for the PPO part and 1100 Da for each of the PEO 
parts. The polymer is commercially available from Serva AG, Heidel- 
berg, Germany, under  the name P85. 

The aggregation behavior of P85 in water has been studied by SANS 
[59,80] and SAXS [81]. The P85 is present as single chains at low tempera- 
tures (T < 5°C) and forms aggregates/micelles at higher temperatures. This 
behavior is ascribed to the properties of PPO, which is hydrophilic at room 
temperatures  and becomes hydrophobic at higher temperatures.  The 
PEO is reasonably soluble for temperatures up to T = 70°C. The present 
discussion is limited to the dilute region with well-defined micelles, 
where the structure factor effects are small. 

Measurements  on a 0.5% wt. solution at T = 50°C were performed at 
the SANS instrument  at Ris0 National Laboratory [82]. In order to 
enhance the contrast and reduce the incoherent background, D20 was 
used as the solvent. SAXS data have been recorded for a 1% wt. solution 
T = 50°C by a conventional Kratky camera (see, e.g. Ref. [82]) by Glatter 
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Fig. 1. The small-angle neutron scattering data of 0.5% P85 in D20 (upper data) [59]. 
The curve is the fit by the analytical model including polydispersity of the micelles. Note 
that the fitted curve is discontinuous where the data from different settings overlap due 
to the instrumental smearing. The lower data are SAXS results on similar micelles [81]. 
The curve is calculated for the results determined by fitting the SANS data. 

et al. [81]. The SAXS da ta  were  corrected for i n s t rumen ta l  smear ing  
effects in connection with  an indirect  Fourier  t r ans format ion  as de- 
scribed in Section 2. The desmeared  SAXS scat ter ing curve is shown in 
Fig. 1 toge ther  wi th  the SANS data.  Note t ha t  the  SANS da ta  have been 
recorded using th ree  different  i n s t rumen ta l  settings. Due to the  differ- 
en t  smear ing  effects for the  different  settings, the da ta  do not coincide 
in the  overlap regions. 

The SANS and SAXS scat ter ing curves are  r emarkab ly  different.  The 
SANS da ta  have  a smooth decrease wi th  increasing q and  resemble  the  
sca t te r ing  form factor of a sphere. However,  no oscillations are  observed 
(c.f. Eq. (55)). A q-2 scat ter ing is observed at  large q, which is s imilar  to 
the  sca t te r ing  from flexible chains obeying Gauss ian  statist ics (c.f. Eq. 
(70)). In contras t  to the the  SAXS da ta  have large oscillations. The range  
of sca t te r ing  vectors is not  large enough to identify power law scat ter ing 
at  large q. 

An indirect  Four ier  t ransformat ion  of the da ta  sets have  been per- 
formed [57,81], and the resul t ing  dis tance distr ibut ion functions are  
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Fig. 2. (a) Dis tance d is t r ibu t ion  functions for the  da t a  shown in Fig. 1. The full curve is 
for the  SANS d a t a  [57] and the broken curve is for the  SAXS d a t a  [81]. (b) Excess 
sca t t e r ing  length  dens i ty  d is t r ibut ions  for the  da ta  shown in (a). The nota t ion  is the  
same  as  in (a). 

shown in Fig. 2(a). Corrections for i n s t rumen ta l  resolution effects were  
included as described in Section 2.1. For the  SANS da ta  the  file scale 
factors were  also adjusted.  The SANSp(r)  function has  a bell shape wi th  
m a x i m u m  at 55 .~ and a tail  at  larger  r, which  extends up to about  140 
.&. The shape  is character is t ic  for homogeneous  almost  spherical  parti-  
cles. In contras t  to the neu t ron  p(r) function, the  SAXS p(r) function has  
m a x i m u m  around  90 A and a much more asymmetr ic  t r i angu la r  shape,  
which  is character is t ic  for spherical  shell shapes. Thus,  the  neu t rons  
'see' a homogeneous  particle, whereas  the  X-rays 'see' a shell. This can 
be explained by the  quite different  in teract ion of X-rays and  neu t rons  
wi th  mat te r .  The neu t rons  are in terac t ing  wi th  the  nuclei,  whereas  
X-rays are  in te rac t ing  wi th  the electrons. For neut rons  the  scat ter ing 
length  of hydrogen and  deu te r ium is quite  different and the  contras t  is 
provided by the difference in deu te r ium density.  It tu rns  out  t ha t  the  
polymer has  a scat ter ing length  densi ty  close to zero whereas  D20 has  
a large scat ter ing length  density: the  scat ter ing is basically from the 
'holes' made  by the  polymer in the D20. For X-rays the  contras t  is due  
to the  difference in electron density.  Organic polymers have  electron 
densi t ies  which  are  quite close to the  electron densi ty  of water .  There-  
fore, the  contrasts  are very sensit ive to the actual  value of the specific 
volume of the  polymer. It seems reasonable  from the  p(r) functions alone 
to a s sume  tha t  the specific volumes are  so tha t  main ly  a shell of 
dissolved PEO chains is probed. Accurate  densi ty  m e a s u r e m e n t s  [83] as 
a function of t empe ra tu r e  for a series of P E O - P P O - P E O  block copoly- 
mers  can be used for calculat ing the specific volumes of PEO and PPO 
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parts.  Such calculat ions [59] show tha t  the contras t  of the  PPO is small  
and negative,  whereas  the contras t  of the  PEO is la rger  and positive. 
This confirms t ha t  it is main ly  the PEO which is observed in SAXS. The 
presence of dissolved PEO chains are also supported by the  observed q-2 
behavior  at  large q in the SANS data.  If  a model should be const ructed 
from the  available information,  it should consist of a homogeneous  and 
spherical  PPO core and  a shell of dissolved PEO chains. 

The p(r) functions indicate tha t  the part icles have  an approximate  
spherical  symmet ry  and the  oscillations in the  SAXS scat ter ing curve 
show t h a t  the  size polydispersi ty is small. It  is therefore reasonable  to 
apply the  square-root  deconvolution procedure to thep(r )  functions [4,5]. 
In this procedure  the  excess scat ter ing length  densi ty  dis t r ibut ion Ap(r) 
is pa ramete r i zed  by a set of step functions. The p(r) is calculated from 
Ap(r) and  leas t -squares  fitted to the p(r) function from the  indirect  
Four ier  t ransformat ion.  A smoothness  constra int  is applied and the  
coefficients in the  parameter iza t ion  are  optimized by non- l inear  least- 
squares  methods.  The resul t ing  Ap(r) functions are shown in Fig. 2(b). 
The function for the  SANS da ta  shows the  expected high densi ty  core 
and  a lower densi ty  shell. The function for the  SAXS da ta  also shows 
the  expected behavior  wi th  a small  negat ive value in the  core and  a 
la rger  positive value  in the  shell region. This is in perfect ag reemen t  
wi th  the  calculated contrasts .  Note tha t  the size of the  core agrees quite  
well  for the  two Ap(r) functions, but  tha t  the  functions do not go to zero 
at  the  same  r value.  The d i sagreement  at  large r is probably explained 
by the  fact t ha t  the neut rons  are not very sensit ive to the  low concen- 
t ra t ion  par t  of the  shell wi th  the PEO chains. 

The informat ion from the model - independent  approaches  suggests  
t ha t  the  form factor given by Eq. (74), for a particle wi th  spherical  core 
and  Gauss ian  chains  a t tached  to the surface, is appropr ia te  to use for 
f i t t ing the  data.  The n u m b e r  of fit t ing pa ramete r s  in the  model is qui te  
large and  in order  to reduce it, some of the  pa ramete r s  were  es t imated  
from other  measu remen t s .  The excess scat ter ing length  densi t ies  were  
calcula ted from the  composition of the P85 triblock copolymer and  the  
specific volumes,  which  can be derived from densi ty  m e a s u r e m e n t s  [83]. 
The contour  length  of the PEO chains were  calculated to be 90 A using 
the  pa rame te r s  given by Flory [85] and Aharoni  [84]. 

The inter-part ic le  in terference effects are quite  small  for the low 
concentra t ions  (0.5-1% wt.), but  as the  chains extend into the  solvent,  
they  are  not  completely negligible. Therefore,  the  in ter-micel lar  effects 
were  included in the  analysis  of the  da ta  using a ha rd-sphere  s t ruc ture  
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factor  (Eq. (83)). As the  condi t ions  for t he  SANS and  SAXS measu re -  
m e n t s  are not  identical ,  i t  was  not  a t t e m p t e d  to fit t he  two da t a  sets 
s imul t aneous ly .  I n s t ead  a s t r a t egy  was  chosen,  in which  only the  SANS 
d a t a  were  f i t ted and  the  resu l t s  were  used  for ca lcula t ing  a SAXS 
sca t t e r ing  curve which  was  compared  to the  recorded data .  

The  theore t ica l  sca t t e r ing  curve was  smea red  by the  i n s t r u m e n t a l  
reso lu t ion  funct ion  [23], w h e n  the  fit to the  SANS da ta  was  performed.  
For  each se t t ing  the  appropr ia t e  resolu t ion  funct ion  was  used.  The  
f i t t ing  was  carr ied  out  as descr ibed in Section 2.2 by combin ing  gr id  
sea rches  w i th  more  advanced  procedures .  

It  t u r n s  out  t h a t  the  oscil lations in the  model  form factor a re  too 
p ronounced  compared  to the  expe r imen ta l  sca t t e r ing  curve.  Therefore ,  
size po lydispers i ty  of the  micelles was  inc luded  us ing  a Schulz  d is t r ibu-  
t ion for t he  aggrega t ion  number .  Note  t h a t  s imi lar  d i s t r ibu t ions  are  
p r e d i c t e d  by t h e r m o d y n a m i c  e q u i l i b r i u m  theo r i e s  for s u r f a c t a n t  
micel les  [86,87]. In  a f irst  a t t e m p t  the  core was  a s s u m e d  to be consti-  
t u t e d  solely by the  PPO par t s  of the  chains.  The  d i s tance  f rom the  
surface  of the  core to the  s t a r t ing  points  of the  Gauss i an  cha ins  was  a 
f i t t ing  p a r a m e t e r .  

The  polydisperse  model  fits the  sca t te r ing  da ta  r easonab ly  well. The  
m a i n  devia t ions  are  in the  region w he re  t he re  is a crossover in the  
s ca t t e r ing  da t a  to the  q-2 behavior .  In  order  to achieve perfect  a g r e e m e n t  
in th is  region it  was  necessa ry  to include a low dens i ty  PEO shell  a r o u n d  
t he  core in accordance wi th  the  sugges t ion  by Mor t ensen  and  P e d e r s e n  
[80]. I t  shou ld  be no ted  t h a t  t he  excluded vo lume  in te rac t ion  be tween  
t he  cha ins  is not  inc luded  in the  model.  As the  concent ra t ion  of cha ins  
is qu i te  large at  t he  surface,  it is l ikely t h a t  the  region closest to the  PPO 
core is more  homogeneous  t h a n  the  region fu r t he r  away. 

For  a mode l  wi th  a PPO core wi th  a low dens i ty  shell  of PEO and  
dissolved PEO chains ,  the  average  aggrega t ion  n u m b e r  w a s  Nagg -- 74 
wh ich  cor responds  to a r ad ius  of the  PPO core ofR = 40 .~. The  add i t iona l  
shell  con ta ins  23% of the  PEO cha ins  wi th  a wa te r  con ten t  of 77%. The  
ou te r  r ad iu s  of th is  shell  is 49 A. The  K u h n  l eng th  is d e t e r m i n e d  to be 
b = 10 A, w h i c h  agrees  well w i th  previous  e s t ima tes  [84]. The  s t a r t i ng  
poin t  for t he  PEO cha ins  is 0.25 × Rg away  from the  surface  of the  PEO 
core shell.  The  polydispers i ty  of the  aggrega t ion  n u m b e r  is ~(Nagg)/Nagg 
= 0.37, w h e r e  g(Nagg) is the  s t a n d a r d  devia t ion  of the  Schul tz  dis t r ibu-  
tion. The  cor respond ing  polydispers i ty  of the  rad ius  of the  core is ~(R)/R 
= 0.13. This  re la t ively  large polydispers i ty  could explain  why  the  shear-  
i nduced  single crystal  BCC phase  observed at  h ighe r  concen t ra t ion  
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possesses only angular  order and not positional order [88]. 
The corresponding scattering intensity of the resulting model for 

X-rays was calculated and is shown in Fig. 1. The model intensity curve 
reproduces the pronounced oscillation close to q = 0.1 ~-1 in the meas- 
ured data and a reasonable qualitative agreement is obtained. 

The analysis described in the present section demonstrates the 
various steps in a typical analysis. The model-independent methods 
were used for obtaining information on the shape of the micelles and 
identifying the different components of the structure. A model was 
constructed from the available information and fitted to the data using 
least-squares methods. Detailed structural information was obtained on 
the micellar structure from the analysis. 

5. Summary and conclus ions  

Analysis of small-angle scattering data for colloidal systems consist- 
ing of particles or polymers in a solvent has been discussed. Only 
systems with short range correlations have been considered. Systems 
with long-range order have sharp Bragg reflections, which can be 
resolution limited, and the analysis of the data can be quite different 
from the analysis described in the previous section. In the cases where 
the system possesses order similar to that  of a single crystal, the 
orientation of the sample also has to be considered. A complete descrip- 
tion of the three-dimensional scattering geometry is required and this 
is quite complicated [89]. 

A typical data analysis involves both a step with model-independent 
analysis and a step in which a model on analytical form is fitted to the 
data. The model-independent step can be an indirect Fourier transfor- 
mation that  involves linear least-squares fitting. In some cases it can be 
supplemented by a square-root deconvolution which gives the scattering 
length density profile. The square-root deconvolution requires the ap- 
plication of non-linear methods. A model may be constructed based on 
the information obtained from the model-independent approaches, but 
any additional available information on the systems should also be 
considered. An example of an application of the model-independent 
approaches and of model fitting was given in the previous section. 

The indirect Fourier transformation [1] described in Section 2.1 
concerns the three-dimensional distance distribution function, and it is 
best suited for particles with shapes that  are not too anisotropic. 
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However, a similar approach can be applied for obtaining cross-section 
distance distribution functions for particles with large anisotropies 
[2,90]. For infinitely long rods and infinitely large two-dimensional 
planar structures the scattering from the overall dimension and the 
cross-section separate. This means the scattering can be written as the 
product of a power law and a Fourier transform of the cross-section 
distance distribution function. For rods the power law is q-1 and the 
basis function in the Fourier transform are zeroth order Bessel func- 
tions. For planar structures, the power law is q-2 and the basis functions 
are cosines. If the cross-section structure has centro symmetry, it is 
possible to apply the square-root deconvolution procedure and obtain 
the cross-section excess scattering length density distribution [4,5]. An 
example with an application to planar structures has been given by 
Maurer,  Glatter and Hofer [91]. In this study the cross-section structure 
of large lipid vesicles was determined by SAXS. Applications to rod-like 
particles have been described by Schurtenberger, Jerke, Cavaco, and 
Pedersen [92]. The cross-section structure of inverse lecithin micelles 
with a small core of H20 and D20 in deuterated cyclohexane was 
determined by SANS. The water  and lecithin distributions were deter- 
mined from the difference between the scattering length distribution of 
the particles with H20 and D20. 

The fact that  the scattering from the cross-section and the scattering 
from the large dimension(s) separate for particles with large anisot- 
ropies can also be used for extending the available form factors. For 
planar structure one has, if the cross-section dimension is small com- 
pared to the overall size: 

P(q) = P(q)" Pcs(q) (91) 

where P(q)' is the form factor of an infinitely thin shell describing the 
overall shape of the object and: 

Pes(q) = ~ APcs(r) cos(qr) dr 2 (92) 

where APcs(r) is the centro symmetric cross-section scattering length 
density distribution function. P(q)" can be the form factor of an infinitely 
thin spherical shell, elliptical shell, cylinder shell, or disk. 

For particles with a local rod-like structure, the scattering can also 
be writ ten using an expression like Eq. (91), if the overall dimension is 
large compared to the cross-section dimension. In this case 
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Pcs(q) = 2~ ~ APcs(r ) 2Bo(qr)r dr 2 (93) 

w h e r e  APcs(r) is aga in  the  centro  symmet r i c  cross-section sca t t e r ing  
l e n g t h  dens i ty  d i s t r ibu t ion  funct ion.  P(q)" can be the  form factor  of an  
inf in i te ly  t h in  rod (Eq. (66)) or a semi-flexible po lymer  cha in  w i th  or 
w i t h o u t  excluded vo lume  in te rac t ions  [51,93]. 

The  cons t ruc t ion  of a model  cross section m a y  be a ted ious  job. F i r s t  
t he  mos t  i m p o r t a n t  f ea tu res  of the  s t ruc tu re  have  to be ident if ied,  so 
t h a t  a mode l  s t r u c t u r e  can be formed. Bu t  occasionally,  analy t ica l  
express ions  are  no t  avai lable for t he  sca t t e r ing  cross sect ion of the  model  
s t r u c t u r e  a nd  it  is necessa ry  to cons t ruc t  t h e m  or ca lcula te  them.  This  
was  the  case for t he  P85 micelles descr ibed in the  previous  section. W h e n  
ana ly t ica l  express ions  are  derived,  it  is often conven ien t  to use  Monte  
Carlo s imu la t ions  [94] for checking  the  analyt ica l  express ions  as it was  
done for the  P85 micelles [59]. In  some cases it  m a y  be imposs ible  to 
ob ta in  ana ly t ica l  express ions  as it  is for semi-flexible polymers .  I f  
s ca t t e r ing  func t ions  are  available,  for example ,  f rom c o m p u t e r  s imula-  
t ions  for a large r ange  of pa r am e te r s ,  t he  sca t t e r ing  funct ions  can be 
p a r a m e t e r i z e d  and  in te rpola ted ,  so t h a t  they  can be used  for least-  
squa res  f i t t ing  [51,53,93]. 

W h e n  f i t t ing  expe r imen ta l  da ta ,  it  is not  u n u s u a l  t h a t  t he  informa-  
t ion con ten t  of  a da t a  set  is qui te  low. The  p a r a m e t e r s  of t he  model  are  
t h e n  ve ry  corre la ted  and  w h e n  physical  p a r a m e t e r s  like the  m a s s  
dens i ty  a re  ca lcula ted  f rom the  fit p a r a m e t e r s  it m a y  give unphys i ca l  
values .  Such  prob lems  can be grea t ly  reduced  if  t he  da t a  are on an  
abso lu te  scale and  the  molecu la r  proper t ies  of t he  cons t i tu t ing  mole- 
cules are  t a k e n  into account  in the  model  as cons t ra in ts .  I f  t he  dens i t ies  
a re  k n o w n  from o the r  types  of m e a s u r e m e n t s  th is  i n fo rma t ion  can be 
inc luded  and  unphys ica l  solut ions  can be avoided. The  in fo rma t ion  
con ten t  of  the  da t a  can also be e n h a n c e d  by m e a s u r i n g  for severa l  
d i f fe rent  cont ras ts ,  or by m e a s u r i n g  the  samples  by bo th  X-ray and  
n e u t r o n  scat ter ing.  For  n e u t r o n s  the  con t ra s t  va r ia t ion  can be done by 
va ry ing  the  d e u t e r a t e d  fract ion of the  solvent.  I f  t he  par t ic les  have  
c o m p o n e n t s  wi th  di f ferent  composi t ion,  the  con t ras t  va r i a t ion  will pro- 
vide add i t iona l  in format ion .  The  combina t ion  of X-ray and  n e u t r o n  
sca t t e r ing  is in some cases very  efficient ([95], see also previous  section). 
This  is t he  case for su r f ac t an t  sys tems  wi th  heavy  a toms  in t he  h e a d  
group,  for wh ich  the  X-ray sca t t e r ing  is a lmos t  en t i re ly  f rom the  head  
group  region,  w h e r e  as the  micelles appea r  to be homogeneous  for 
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n e u t r o n  s c a t t e r i n g  in D20.  T h e  e x t r a  i n f o r m a t i o n  f rom c o n t r a s t  va r i -  
a t i on  is m o s t  e f f ic ien t ly  t a k e n  in to  accoun t  i f  t he  d a t a  f r om d i f f e r e n t  

c o n t r a s t s  a r e  f i t t ed  s i m u l t a n e o u s l y .  In  th i s  case  t he  s a m e  p a r a m e t e r s  

for  t h e  g e o m e t r y  can  be used  and  only  t he  s c a t t e r i n g  l e n g t h  dens i t i e s  
d e p e n d  on w h i c h  c o n t r a s t  is cons idered .  
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