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Abstract

Analysis and modeling of small-angle scattering data from systems consisting of
colloidal particles or polymers in solution are discussed. The analysis requires applica-
tion of least-squares methods, and the basic principles of linear and non-linear least-
squares methods are summarized with emphasis on applications in the analysis of
small-angle scattering data. These include indirect Fourier transformation, square-root
deconvolution, size distribution determinations, and modeling. The inclusion of correc-
tions for instrumental smearing effects is also discussed. The most common analytical
expressions for model form factors and structure factors are summarized. An example
of analysis of small-angle neutron and X-ray scattering data from block copolymer
micelles is given.

1. Introduction

The article concerns analysis of small-angle scattering data from
colloidal and polymer systems consisting of particles or molecules in a
solvent. Only systems with short range order and isotropic scattering
spectra, for which the scattering intensity is only a function of the
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modulus of the scattering vector are considered. Both X-ray and neutron
scattering are treated, however, the more detailed discussion of the
program implementations, in particular those concerning instrumental
smearing, have emphasis on neutron scattering. It is the intention that
the notes can serve as a practical guide in analyzing small-angle
scattering data. They contain a relatively brief, but self-contained,
description of linear and non-linear least-squares methods with empha-
sis on the applications in the analysis of small-angle scattering data.
The notes also contain a large collection.of form factor and structure
factors, which are convenient to have at hand when analyzing experi-
mental data.

Small-angle scattering data are usually analyzed either by model-
independent approaches or by direct modeling. Both of these approaches
require the application of least-squares methods. The model-independent
approaches may consist of a Fourier transformation of the experimental
scattering curve, which provides the pair distance distribution function
p(r) or, equivalently, the correlation function y(r), where the relation is:
p(r) = r?y(r). The Fourier transformation is usually done by the Indirect
Fourier Transformation (IFT) method introduced by Glatter [1,2]. This
method can be applied for all systems for which the correlations have a
finite range. It has several advantages compared to a direct Fourier
transformation, as it allows corrections for instrumental smearing ef-
fects and it does not require extrapolations of the data. The p(r) function
provides real-space information and comparisons to model calculation
may provide key information and give suggestions for the structure of
the particles [2,3]. After interpretation of the p(r) function it may be
possible to construct a model on an analytical form, which can be fitted
to the data. For particles with centro symmetry it is possible to go one
step further with the model-independent analysis and perform a
SQuare-root DEConvolution (SQDEC) of p(r) as described by Glatter, so
that the radial scattering length density profile p(r) is obtained [4,5].
The information obtained by this procedure would of course also be
incorporated in later attempts to perform model fits to the data. The
indirect Fourier transformation requires the application of a linear
least-squares method, whereas the square-root deconvolution procedure
requires the application of non-linear least-squares methods.

For polydisperse systems, the aim of the analysis is to extract the size
distribution of the particles when a particular shape of the particles is
assumed. For very dilute systems, this can be done with a free-form size
distribution [6] by a linear least-squares method, which may include a
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non-negativity constraint [7]. For systems with a finite concentration of
particles which interact with a hard-sphere potential, the size distribu-
tion can also be determined on a free-form, but this requires a non-linear
least-squares method [7].

For systems with a collection of monodisperse particles, there exists
a method for determining the shape of particles model independently by
fitting directly to the scattering data. This requires that the particles
have a nearly homogeneous distribution of scattering length density. A
multipole expansion is used for the shape of the particles and the
coefficients of this expansion are determined by non-linear least-
squares methods [8,9]. The method has been modified so that it can be
used for shape determination of the components of ‘two-phase’ particles
[9], and it has been applied successfully to the 50S subunit of the
ribosome of E. coli [10-12].

When applying the least-squares methods, it is important that the
scientist understand the basic principles, so that the computer programs
do not entirely work as a “black box”. With some basic understanding it
is possible to avoid the most common pitfalls and to understand, why
the program ‘reacts’ as it does, and perhaps, if the applied procedure
fails, to choose another strategy which works better. Section 2 of the
present notes gives an overview of the least-squares methods. Some of
the most common available small-angle scattering model expressions
are summarized in Section 3, whereas an example of modeling of
small-angle scattering data from block copolymer micelles is given in
Section 3.

2. Least-squares Methods

There exist many excellent books on least-squares methods. Two of
these are the book by Bevington [13] “Data Reduction and Error Analy-
sis for the Physical Sciences” and the book by Press, Flannery, Teukol-
sky, and Vetterling [14] “Numerical Recipes”. The book by Bevington
gives a good introduction as well as a description of the most common
methods without excessive use of mathematics. The book by Press,
Flannery, Teukolsky, and Vetterling describes in addition some of the
numerical aspects and problems when implementing the method. It
should also be noted that this book is very useful when implementing
complex model expressions as it contains a large collection of routines
for special functions.
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The least-squares method employs the chi-squared (y*)function as a
measure for the deviation between the experimental data and the model.
Let I**P(q,), i = 1,...,N be the data points measured for the independent
variable g,. In a scattering experiment I**P(q;) is the measured intensi-
ties and g; is the modulus of the scattering vector. The counting statistics
will give rise to the statistical uncertainties o; on the data point I®*P(g;).
The chi-squared is defined as:

(D

N 2
I%%(q;) — (™°%g,)
fEZ[ < ]

=1

where Im"d(qi) is the model intensities which depends on the parameters
a;,t=1,..,M. It is often convenient to consider the reduced chi-squared
%2, which is given by:

2
a__ X
Xr—N_M (2)

where N-M is the number of degrees of freedom. The optimum set of
parameter values for a model is determined by minimizing Eq. (1). A fit
with %2 = 1 is considered to be an ideal fit. Note that for N >> M a fit
with %? = 1 has ‘on average’ |I*®®(q;) — I"™%gq,)| = o,, which means that
the deviations are on average equal to the statistical uncertainties. A
more rigorous discussion of the chi-squared function can be found in the
text books mentioned above.

2.1 Linear Method

The model intensity function is linear, if it can be written as:

M

m4q) =Y, a,X,(@) (3)

k=1

where X,(q) is a set of basis functions. This is the case for the indirect
Fourier transformation [1,2] for which the distance distribution function
is written as:
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M

p(r) =Y a,B(r) (4)

k=1

where B(r) are cubic b splines. These are bell-shaped functions, com-
posed of piecewise third-order polynomials. One has

@) =4 [ p() o dr - Zaka@) (5)
k=1

where

X,(q) = 4n | By(r) =27 Sm(q’) 6)

Alternative linear approaches for performing the IFT have been
described by Moore [15], Svergun, Semenyuk and Feigin [16] and
Svergun [17]. Note that the maximum entropy method, which also can
be used, does give rise to a linear problem [18].

The determination of size distributions on a free form is also a linear
problem. In this case

™odq) = Ap? | N(R)F %q,R)dR )

where Ap is the scattering length density contrast, N(r) is the size
distribution and F(q,r) is the form factor amplitude. For homogeneous
spheres:

4r R3 3[sin(qR) — qR cos(qR)]

F(q,R)= @B

(8)
Setting:
M
N(R) = a;By(R) (9)
k=1

where B,(R) are cubic [6] or linear [7] b splines, the model intensity
becomes
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M

mdg) = ¢, X,(q) (10)
k=1

with

X,(q) = Ap? [ ByR)F%q,R)dR (11)

which demonstrates that this is also a linear problem.

The chi-squared function can be minimized by many different meth-
ods, for example by making a qualified guess on the values of the
parameters and then simply vary the parameters one by one so that
successively lower values of chi-squared are obtained. Such a simple
(but time consuming!) grid search method would work. It would, how-
ever, be better to take advantage of the general properties of the
chi-squared function and of the fitting function.

The minimum of chi-squared occurs where the partial derivatives of
(1) with respect to a;, are equal to zero:

2
I o for k=1,..M (12)
aak

Equations (1) and (3) give:

N M
Y |- 3 aXien | Xx) =0 for k=1,.,M (13)

=1 J=1

which is equivalent to the normal equations:

> o =By (14)
where
=y S0%() 15)

0‘.
=1 v
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and
N
z Iexp(q[)Xk(q],) (16)
i=1 ‘

In matrix notation

A-a=b 17

where [A]; = 0;; and [b], = [,

The values for a; that minimize chi-squared is thus determined by
solving a set of linear equations. It should be noted [14,19] that the
equations should not be solved by numerically calculating the inverse
matrix and multiplying it on both sides of the equations. If the equations
are close to being singular (which is not an unusual situation) the
numerical calculations will give an accumulation of round-off errors and
the final solution for a; will not fulfill the original equation (17). It is
much better to use a more robust method like Gauss—Jordan elimination
with pivoting [14,19] for solving the equations.

For estimating the errors on g; a basic rule for accumulation of errors
is applied. For the function flx,,...,xy) of the parameters x; with known
errors o(x,):

N 3 2
62(/)=§ [%] o(x;) (18)

This equation is valid if the a;s are independent parameters. If the
parameters a; are considered to be functions of the observed intensities
I**P(g;) so that a (I**(g,),...,I**P(gy)), then

N 3 2
200\ = | 2
07(a)) izzl (BIEXP(qi)] S; (19)

In order to calculate the quantity in the brackets, the formal mathe-
matical solution to (17) is used:
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M M
_ _ Ayl (@)Xx(q;)
=3 (A8, =D (A7, Z’_‘———"ﬁg : (20)
k=1 k=1 i=1 :

The derivative of this equation with respect to I*®(g,), which in this
context is considered to be a parameter, is then calculated:

M

oa, Xk(qt
== 21
dI**P(q,) z c? 2D
k=1
Inserting this in (19) gives
M M N
Xi( )X (q;)
@)=Y 3, A, A, | 3 T (22)
k=1 I=1 i=1 l
: N
Noting that [A];, = o, = z X(q,) X,(g,)/c? the final result is
i=1
Gz(aj) = [A—I]ﬂ (23)

which means that the square of the errors are given by the diagonal
elements of A™L. If the reduced chi-squared %2 at the minimum is larger
than one, it is common to set

o?(a)) = x2A; (24)

as this to a certain extent takes into account the short-comings of the
applied model function and/or systematic errors in the data.
Using (24) the errors on, for example, p(r) can be estimated as

M M
SZlp(] =Y 6 (@Bu(r)? = X7 3. [ATBy(r)? (25)
k=1 k=1

This equation has the short-coming that it assumes that the a;s are
independent and thus neglects the covariances of the parameters a;.
Taking this properly into account [14] modifies the expression to

M M

Pl =x2 Y, Y (A, BB (26)
k=1 I=1
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For the indirect Fourier transformation [1] the number of basis func-
tions in Eq. (4) usually has to be quite large (30—60) in order to give a
sufficient resolution for p(r). However, this often results in a nearly
singular set of equations and large oscillations in p(r). The function is
expected to have a relatively smooth behavior, and therefore a smooth-
ness constraint on p(r) is applied. This is done in such a way that the
normal equations remain a linear set of equations. The expression

%% + AN, is minimized instead of %, where N, is the measure of the
M-1

smoothness, N, = ¥ (a; 11-0))? +ajy +af [1,20], and A is a constant which
J=1

can easily be chosen by the point-of-inflection method [1]. Alternative

methods for choosing A can be found in [21].

For determination of size distributions it is physically reasonable to
apply a non-negativity constraint for N(r) as well as a smoothness
constraint. This can be done by reducing the normal equations in a
systematic way, so that only those that give non-negative values are
kept. This approach also gives a linear set of equations [22].

The application of the smoothness constraint has in both types of
applications the consequence that Eq. (26) cannot be used for a reliable
determination of the errors on the distribution functions. It can in these
cases be recommended to use the Monte Carlo method [14,19]. In this
method a large set of additional ‘experimental’ data sets (typically N,
= 50) are generated from the original data set by adding random errors
to the original data sets of the same magnitude as those of the original
experimental data. These data sets are analyzed and give the functions
pr), i=1,..., Ny;c and the errors on p(r) are calculated as

NMC

o) =7~ 3 Ipir) - p(r))? 27)
Mc =1

This approach automatically takes into account the covariances and it
can of course also be used for determining the errors on other parameters
derived from a;. It should be noted that the ‘experimental’ data only
enter the right-hand side of the normal equations. When the Gauss—Jor-
dan elimination procedure is used for solving the equations, the different
right-hand sides can be treated simultaneously, and the equations have
to be solved only once [19].
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Experimental scattering data are always influenced by instrumental
smearing, and it may be necessary to include corrections for this in the
data analysis. Owing to the finite resolution of the instrument the
scattering in a region around the nominal scattering vector{q) is probed.
For small-angle neutron scattering, the distribution of scattering vec-
tors g can be described by a resolution function R({(q),q) (see, for example
Ref. [23]), and the smearing effects can be taken into account in the
model scattering intensity by

M

moddg) =Y a, X,((@), where X,(q)) = J R((g).9) X,(g)dg (28)
k=1

The experimental data which enter the expression for chi-squared (1)
should be written as I({(g,)) as they are recorded for the nominal scatter-
ing vectors. For small-angle X-ray scattering data recorded using a
long-slit camera, the smearing is calculated using the usual procedure,
which involves weighting functions (see, e.g. Ref. [1]). This procedure is
numerically more complicated as three integrals have to be calculated,
however, the result is in principle the same as described by Eq. (28) as
it is the basis functions which are smeared.

In most small-angle neutron scattering experiments, the data are
recorded using more than one instrumental setting. Each setting corre-
sponds to a set of values of the wavelength, wavelength resolution,
collimation and sample-to-detector distance. Therefore each of the N,
settings has its own resolution function R/({(g),q), and it is therefore
convenient to write

N [Iexp«q >) Imod(<q >)] (29)

x—ZZ =

i
where the index j refers to which data set is considered. The model
intensity is then

M

(g =3 a, X, (g)  where X, () =]Ri(@),q) Xya)dg (30)
k=1

The corresponding changes to the normal equations ((13)—-(16)) consist

in changing the summations overi = 1,....N to a double summations over
J=1,.., Ny and i =1,.,N(j) and changing g, to {g,).
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It is often so that not all data sets are known on an absolute scale,
and furthermore, even if they are, there are typically small (systematic)
errors of a few percent in the scale. As the errors from counting statistics
can be less than one percent, the errors on the scales are quite important
when fitting the data. The scale factors of the data sets should therefore
be adjusted. Svergun [24] has suggested a method for adjusting the scale
of one data set with respect to another, which is somewhat complicated:
the normal equations for the problem without the smoothness constraint
plus an extra linear equation for the scale factor are solved by singular
value decomposition [25]. However, a simpler approach can also be used
[26]. First the most reliable data set is chosen so that the other sets can
be scaled to match this one. Then the data sets are scaled so that they
agree within 10-25% in the overlap region, and the constant A is
determined by the point-of-inflection method. The value of A is kept fixed
while the scale factors are optimized. It should be noted that it is only
the [B,s which depend on the scale factors, and therefore it is not
necessary to recalculate (and smear by instrumental resolution) the o;;s
and the basis functions which enter f3;. The scale factors can be adjusted
relatively fast to an accuracy better than 0.5% by a simple grid search
combined with a parabolic approximation of x2 close to the minimum
[13,26]. If three or more data sets have been recorded it may be
necessary to go through the data sets several times and adjust scale
factors until the procedure is converged. It can be recommended to
determine the scale factors by this procedure before performing least-
squares fit using analytical models as it can save a lot of computer time.

2.2 Non-linear Method

If the fitting function is not a linear function of the parameters, the
least-squares problem is said to be non-linear. As for the linear method,
the chi-squared function can simply be minimized by a grid search in
which one makes a qualified guess on the values of the parameters and
then successively and repeatedly optimizes the parameters one by one.
However, this grid search method is very time consuming and it is often
advantageous to apply more advanced methods. Due to the non-linearity
of the fitting function all of the methods require a set of starting values
for the parameters.

A method, which is better than the grid search and also relatively
simple is the gradient method also known as the steepest descent method
[13,14]. In this method one calculates analytically or more often numeri-
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cally, the gradient of chi-squared, dy2/ da;. The search for a new set of
parameter values is done along the negative direction of the gradient.
All parameters are changed simultaneously and the new values a,_,,, are
obtained from the old set a 4 by

a,,, =a,4 +da=a, + constant x b (31)

where b is the negative gradient ([bl; = —9y*(a,4)0a;) and the constant
is appropriately chosen, so that x? decreases. The steepest descent
method is effective relatively far away from the minimum. As the
minimum is approached it becomes gradually more inefficient.

A method which works better close to the minimum is based on a set
of equations similar to the normal equations for the linear problem.
These equations have to be solved iteratively [13,14]. Let a; be an
estimate of the parameters which is not too far from the minimum of 2.
A multi-parameter Taylor expansion of chi-squared around a gives:

M M
2( ')_ 2()+Z QX_Z(a)aa +lz-a—21-2~(a)6a8a+
xa)=x1a .laai ‘ 2_.18ai8aj PO
i= ij=

-~c—b-8a+%8a-A~8a (32)

where = da =a’ —a and

ax2 82X2
— 2 P 2 =
c=@ [b=-g ) Al=5 S @ (33)

l

Using the approximation in the second line of (32) the gradient of 2
in a’can be estimated as

2
9L (a)=A-8a-b (34)
da;
For a’ = a_;, this gradient is equal to zero and one has the normal
equations

A-da=b (35)
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‘where A and b are calculated at the old value of a. Thus, one obtains
(formally) a new estimate for a by

A, =a+da=a,+A-b (36)

This method can be applied successively until the changes in x? are
negligible. However, there is one problem in applying this method
directly as it requires that both the first order and second order deriva-
tives are available. It is often only practically possible to calculate the
derivatives numerically. This is quite time consuming as the calculation
of the second order derivative requires the calculation of M(M-1)/2
terms and each of these requires the evaluation of the fitting function
in N values. It is more efficient [13] to use a first order Taylor expansion
of the fitting function I™d(q,a):

M M
aImod ;
I™d(q;a’) = [°Yq;a) + Z aa(? ) Saj =J™d(g:a) + 2 da Xi(q;a) (37)
J=1 ’ =1

where a’ = a + 6a and

or™°d(q;a)

X{(q;a) = (38)

Inserting the right-hand-side of (37) in the expression for chi-squared
(Eq. (1)), and considering [I#*P(q) — I"™°d(q;a)] as the ‘experimental data,
it is straight forward to see that the normal equations for 8a; for the
linearized function are the same as those for g; in the linear problem,
with [I¢*P(q) — I™d(g;a)] instead of I®*P(q). Hence,

N
X' i;a X( i; [Iex —IInOd , ]X i;
(g )o-qu a) and By=Y o) cs(.2q a)l X,(q;;a) (39)
13 l=1 i

™ =

1l
—

O =

%

where Xi(g;a) = E)Im"d(q;a)/aaj. A numerical calculation of these deriva-
tives requires only on the order of M x N calculations.

The method with linearized fitting functions works best close to the
minimum of chi-squared, whereas the gradient search is better further
away. Ideally, the two methods should be combined, so that the methods
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are used in the range where they are best suited. There exists an
approach suggested by Marquardt [27] which smoothly combines the
two methods. A parameter A (not to be confused with the prefactor of
the smoothness measure in the IFT methods) is used for enhancing the
diagonal elements of the matrix [A];; = 0;; so that the normal equations
become

A’ -da=b (40)

with
o= Oy +A) fori=j (41)
Yooy for i=j

For A small, the normal equations are basically unchanged and the
method is efficient close to the minimum. For A large, the normal
equations reduce to a set of non-coupled equations:

7\(1]] 8(1] = BJ fOI‘j = 1,...,M (42)

which have the solutions
Oaj == B (43)

Noting that B; is the negative gradient, a comparison with Eq. (31)
shows that the method in this case is the same as the steepest descent
method with the constant equal to 1/(Aoy;). Chi-squared will always
decrease for sufficiently large values of A. The character of the search
method is thus determined by the value of A, and A should be large far
away from the minimum and small close to the minimum. Marquardt
[27] has designed the following procedure:

Calculate y*a).

Set A = 0.001.

Calculate A and b.

Calculate A’ for the current A and determine da.

If x%(a + 3a) > x%(a), multiply A by 10 and repeat (4).

If x%(a + 8a) < x*(a), divide A by 10, take a + da to be the current
a and repeat (3).

A o
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The iterations are continued until the decrease of ¥ becomes negligible.
It should be noted that the normal equations, as for the linear problem,
should be solved using a numerically stable method like the Gauss—Jor-
dan elimination procedure [14].

The standard errors on the parameters q; can be estimated as for the
linear problem:

o(a)) = x2A™]; (44)

However, this method only works if the fitting function is not strongly
non-linear and if the parameters are not strongly correlated. Another
and more reliable approach is to determine c(a;) as the value for which
chi-squared increases by one, when a; is fixed at a; + 6(a;) and the other
parameters are optimized [13]. If the reduced chi-squared is not equal
to one for the optimum values of the parameters, the increase in
chi-squared should be taken as x? at the minimum instead of one. The
advantage of this method is that it takes into account the correlation
between the parameters.

It should be noted that the method by Marquardt [27] for optimizing
chi-squared may not work for highly non-linear fitting functions with
significant correlations between the fitting parameters. For such prob-
lem it can be recommended to use the simple grid search in which the
parameters are optimized one by one repeatedly. This approach has the
advantage that it always works although it is very time consuming. The
grid search may be able to bring the parameter values sufficiently close
to the optimum values, that the method of Marquardt can be used.

The instrumental smearing effects should, as discussed for the linear
problem, be included in the calculation of the model function. For X-ray
scattering in the long-slit geometry this is done using the weighting
functions [28] and performing three numerical integrations. This is
quite time-consuming and makes it difficult to perform fits of compli-
cated model functions.

For small-angle neutron scattering the model function can be written
as
i) = [ Bra) 0L dg (45)
where do(q)/dQ is the ideal scattering intensity (the cross section, see
next section), and R({(g),q) is the resolution function described in the
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previous section. If several instrumental settings have been used for
recording the data, this of course has to be taken into account.

The actual calculation of the integral in (45) is done numerically. For
small-angle neutron scattering experiments, the resolution function is
well approximated by a Gaussian function {23,29,30] and only about 10
points is required for calculating the integral. In an efficient implemen-
tation [31] the resolution function is calculated once and for all in the
beginning of the program, and saved for later use. In this way unneces-
sary repeated calculations are avoided. It should also be noted that
although only 10 points are required in the convolution, it means that
the cross section should be evaluated for 10 x N values, where N is the
number of measured points. If the expressions for the cross section are
complex, the calculation times can be greatly reduced by making use of
master curves and interpolations [29].

3. Models

In this section some of the most common expressions for form factors
and structure factors will be reviewed. It is impractical to give all the
mathematical expressions in the present notes, and for some of the
models only the references to the original papers are given. The reader
is encouraged always to look into the original papers in order to check
the range of validity of the expressions (and for checking for possible
typing errors in the present notes).

The differential scattering cross section do(q)/dQ of a sample can be
defined as the number of scattered neutrons or photons per unit time,
relative to the incident flux of neutron or photons, per unit solid angle
at g per unit volume of the sample. The flux is the number of neutron
or photons per unit time and per unit area at the sample position. It is
convenient to use the cross section as it does not depend on the form or
transmission of the sample.

For a mono-disperse collection of (spherically symmetric) particles
the scattering cross section can be written as

dao(q)

= Ap2 V2
g e V<= P(q) S(@) (46)

where n is the number density of particles, Ap is the difference in
scattering length density between the particles and the solvent/matrix,
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V is the volume of the particles, P(q) is the particle form factor and S(q)
is the structure factor. The form factor describes the structure of the
particles and fulfils P(g = 0) = 1. The structure factor describes the
interference of scattering from different particles and contains informa-
tion on the interaction between the particles. For very dilute systems
S(g) = 1 and the structure factor can be neglected.

An alternative approach is to define the cross section per unit mass
of solute instead of per unit volume of the sample. This cross section can
be written as

d6,(@) 1
o = 31 P M P@)S(@) = A7, MP(@)S(q) (47)

where M is the molecular mass of a particle and Ap,, is the scattering
length difference per unit mass of the solute. The factor 1/M is the
number of particles per unit mass of solute.

The above expressions [46,47] implicitly assume spherical symmetry
of the particle shape and the interactions. For anisotropic identical
particles the cross section is

d
;’g) = Ap? W[ZF(q )2+ Y Flq.e) F(q.e) S (q, e ﬂJ (48)

i i

where the sums are over all particles in the sample and Fi(q,e;) is the
amplitude of the form factor for the ith particle with orientation given
by the unit vector e;. The S;(q,e;,e;) functions are the partial structure
factors which depend on orientations. Note that the first term in Eq.
(48) is just the orientational averaged form factor: P(q) = (F*(q)),.

For particles with only a small anisotropy, it can be assumed that the
interactions are independent of the orientation and given by the average
size of the particles. This leads to the decoupling approximation [32].

do(q)

1o =" VIP@)(1+B(@)(S(@) - 1) (49)

where

B(q) = (F(@N3 /{FAq)) (50)
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and S(g) is the structure factor calculated for the average particle size.

For polydisperse systems it is also not possible to write the scattering
cross section as product of a form factor and a structure factor. In this
case the scattering cross section has the form:

do(q)

2
L= ap? _[D(R)V(R) Fg,R)?dR

(561)

+ [ [ D®VERDERWER)FGRF(GR)SRE q)dRIR’
00

where D(R) is the number size distribution, V(R) is the volume of a
particle with radius R and form factor ¥(q,R), and S(R,R’,q) are partial
structure factors.

For systems with small polydispersities, a decoupling approach simi-
lar to the one for anisotropic particles [32] can be used. It is assumed
that interactions are independent of size. With this one obtains:

d
9D _ pg? (V2P(g)) 11+ Bla(Sta) ~ D) 52
where (V2P(@)) = | D(R)V(R)?F(q,R)*dR and

2
B(q) = U D(R)V(R)F(q,R)dR} / [ | D(R)V(R)ZF(q,R)zdR} (53)

and S(q) is the structure factor calculated for the average particle size.
Note that Eqgs. (561,52) can also be used for slightly anisotropic particles,
if Fi(q,R) is replaced by (F(q,R)); and F (q,R)? is replaced by (F, (q,R)%),.
It is also possible to use a local monodisperse approximation for
including the effects of polydispersity [7]. In this approach it is assumed
that a particle of a certain size is always surrounded by particles with
the same size. Following this the scattering is approximated by that of
monodisperse sub-systems weighted by the size distribution:

dolq)

o= ap? | DRWV(R)F(q.R)2S(q,R)IR (54)
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in which it has been indicated that the structure factor is for particles
of size R. This approach works better than the decoupling approximation
(52) for systems with larger polydispersities and higher concentrations.

3.1. Form Factors

In the following it will be assumed that the particles are randomly
oriented in the sample so that the theoretical form factors for anisotropic
particles have to be averaged over orientation. Note that for spherical
objects the form factor can be written as P(q) = F2(q), where F(q) is the
amplitude of the form factor.

(1) Homogeneous sphere
The form factor of a homogeneous sphere was calculated already in
1911 by Lord Rayleigh [33]. For a sphere with radius R:

3[sin(gR) - qR cos(qR)]

Fl(qaR) = (qR)3

(55)

(2) Spherical shell
This form factor is obtained by subtracting the empty core with a
proper weighting by the volumes:

F ( _ V(R]-)Fl(q’Rl) — V(RZ)Fl(q,RQ)
2q) = VR - V(R,)

(56)

where V(R) = 4nR%/3 and R, and R, are the outer and inner radius of
the shell, respectively. An infinitely thin shell with radius R has the
form factor Fy(q)’ = sin(gR)(qR).

(3) Spherical concentric shells

This form factor is a generalization of the shell form factor. Let R, i
= 1,N be the radii of the shells and p; be their scattering densities. With
this:

N
Fi(q) = A—,_l,; p1V(RDF1(g,Ry) + Y. (p; - pi) VIRDF (g, R)) (57)

=2
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where Mj is the scattering mass or scattering volume of the particle,
given by:
N
M;=p V(R + 2 VR)(p; - pi-y) (58)
i=2
(4) Particles consisting of spherical subunits

The expression was derived by Debye in 1915 [34]. For a particle
consisting of P subunits:

P

o _singgry
2 3(1)M30>F3(q,z>F3<qJ)§%;il) (59)

Py(q) = .
ij

Sl

where F5(q,i) and M5(t) are the form factor and scattering mass of the
ith particle, respectively. r;; is the distance between the centers of the
ith and the jth subunit, and

P
My=2 My@) (60)

i=1

(5) Ellipsoid of revolution
This expression was determined by Guinier [35]. The averaging over
orientations has to be done numerically. For the semi axes R,R,eR:

n/2
Py(q,R,6) = | F2lg,r(Re,) sin o do. 61)
0

where r(R,e,o) = R(sin®a. + e2cos?a)V2. It is straight forward to generalize
(61) for concentric elliptical shells. F'(g,r) has to be replaced by F3(g) in
which the volumes are V(R) = 4neR%/3. Note, that the different shells
can have different values of £. The form factor of an infinitely thin
elliptical shell is given by (61) with F';(g,r) replaced by Fy(gr)’.

(6) Tri-axial ellipsoid
For this object two numerical integrations have to be performed in
order to get the orientational average. For the semi axes a,b,c [36]:
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®/2 r/2
Pyaab)=2 | [ FPlgrabeop) sinododp 62)
0 0

where r(a,b,c,o.B) = [(a? sin?B + b2%cos?P) sin0 + c2cos?a]2. The form
factor for the tri-axial ellipsoid can be generalized in the same way as
(61) for tri-axial ellipsoids consisting of concentric shells. The form factor
of an infinitely thin elliptical shell is given by (62) with F';(q,r) replaced
by Fy(gr).

(7) Cube and rectangular parallelepipedons
Two orientational averages have to be performed. For the edge
lengths a,b,c [37]:

P7(Q>a:b,c) =
(63)
"/2 w2 ) . . ]
2 sin(qa sina cosP) sin(gb sino cosP) sin(ge cosa) |
- J‘ J. . ; - sina do dB
T, 49 sina cosf3 qb sino sinf gc cosa

(8) Truncated octahedra

The equations for an oriented particle were given by Hendricks,
Schelten and Schmatz [38]. The orientational average has to be done as
in Eq. (63).

(9) Faceted sphere
The equations for an oriented particle were given by Dubey [39] (see
also Ref. [40]). The orientational average has to be done as in Eq. (63).

(10) Cube with terraces

The equations for an oriented particle were given by Rodriguez,
Goémez Sal, Moreno, de Geyer, and Janot [41]. The orientational average
has to be done as in Eq. (63).

(11) Cylinder
The expression for a cylinder with radius R and length L was given
by Fournet [42].

n/2
2B,(gR sino) sin((gL cosct)/2
Pa@= | [ 1 (q )

2
gRsino, (gL coso)/2 ] sinc da (64)
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where B,(x) is the first order Bessel function. An expression for cylinders
consisting of concentric shells can be constructed by an approach similar
to the one used for spherical particles. The form factor of an infinitely
thin cylindrical shell with closed ends is given by (64) with the terms in
the square brackets replaced by 2B(g R sin o) cos [(qL cos a)/2].

(12) Cylinder with elliptical cross section
This expression was given by Mittelbach and Porod {43] for a cylinder
of length L and with cross-section semi axes a and b:
/12 n/2
P )_g nJ‘ nJ‘ 2B;(qr(a,b,0,0) sin((gL coso)/2)
12905 ’ gr(a,b,0,0)  ((gL cosa)/2)

:I do sina do. (65)

where r(a,b,d,0) = [a®sin?) + b2cos20]2 sino.. An expression for cylinders

consisting of concentric shells with elliptical cross section can be con-
structed by an approach similar to the one used for spherical particles
and for tri-axial ellipsoids. The shells can have varying eccentricities
(a/b).

(13) Cylinder with spherical end-caps
The equations were given by Cusack [44]. Expressions for a shell
particle were also given.

(14) Infinitely thin rod
The expression was determined by Neugebauer [45]:

P14(q) = 2Si(qL)(qL) — 4 sin*(qL/2)/(q*L?) (66)
where
x
Sito) = [ ttsintdt (67)
0
and L is the length.

(15) Infinitely thin circular disk
The expression was determined by Kratky and Porod [46]:

2 [1 ~ BI(ZqRo] )

P =
14(fI) quZ
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where R is the radius of the disk.

(16) Fractal aggregates
An empirical expression for a mass fractals consisting of spheres with
a radius R has been given by Teixeira [47]:

1 Dri-1)
@R [1+1/(q%2%)P-D/2

Pislq@) = [1+ sin[(D - 1) tan'l(qﬁ)]J Flz(q) (69)

where D is the fractal dimension, & is a cut-off length for the fractal
correlations, and I'(x) is the gamma function. (Note that expressions for
fractal surfaces have been given by Bale and Schmidt [48].)

(17) Flexible polymers with Gaussian statistics
Flexible polymer chains which are not self-avoiding obey Gaussian
statistics. Debye [49] has calculated the form factor of such chains:

P11(q) = 2[exp(—u) + u — 11/u? (70)

with u = (Rg) q2, where (Rg) is the ensemble average radius of gyration
squared: (Rg) = (Lb)/6, where L is the contour length and & is the
statistical (Kuhn) segment length.

(18) Flexible self-avoiding polymers

Empirical expressions have been given by Utiyama, Tsunashima and
Kurata [50]. The parameters should be taken as € = 0.176, ¢ = 2/(1-¢),
and s = 2.90 (see Ref. [51] which also contains a simple approximation).

(19) Semi-flexible polymers without self-avoidance

Numerical interpolation formulae for the Kratky—Porod model [52]
have been given by Yoshizaki and Yamakawa [53]. These have recently
been corrected using results from Monte Carlo simulations [51].

(20) Semi-flexible polymers with self-avoidance

Numerical interpolation formulae have been given by Pedersen and
Schurtenberger [51]. The results are given for R/b = 0.1, where R is the
cross section radius and b is the Kuhn length. This corresponds to a
reduced binary cluster integral of 0.3, which is similar to the value found
for polystyrene in a good solvent.
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(21) Star polymer with Gaussian statistics
The expression was given by Benoit [54]. For a star with f arms:

Pyi(9)= f722 [v ~[1-exp(-v)] + f—;l— 1- exp(—v)]z} (71D

with v = u?f/(3f-2), and u = (Rf,)qz, where (Rg,) is the ensemble average
radius of gyration squared of an arm.

(22) Star-burst polymer with Gaussian statistics

Expressions have been given by Burchard and Kajiwara [55] and by
Hammouda [56]. The results are obtained by summation of geometrical
series. However, it cannot be recommended to use these as the perform-
ance of the sums introduces singularities. It is better to use the expres-
sions before the sums are performed [57].

(23) Regular comb polymer with Gaussian statistics
Expressions have been given by Casassa and Berry [58].

(24) Arbitrarily branched polymers with Gaussian statistics
The form factor for P subchains can be written as [57]:

P P
1
Poy(@) =0 | 2 PEP1(@L) + 2 3, pippw(@ Lv(aLy) exp(-g*df) | (72)
24| a1 i>j

where (R,) in Py4(q,L;) is calculated for L;, the contour length of the ith
subchain. p; is the total excess scattering length of the ith subchain.
Furthermore,

y(g,L;) = [1 — exp(—uw)l/u (73)

where u = (Rz,)qz. The parameter d% = L;jb, where L;; is the separation
in contour length between the starting points of the ith and the jth
P

subchains. The scattering mass M, is given by My, =Y. p; .
i=1

(25) Sphere with Gaussian chains attached

The expressions have recently been derived by Pedersen and Ger-
stenberg [59]. For a sphere with radius R and total excess scattering
length p, with N, attached chains of contour length L:
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Pys(q) = ﬁlz‘ [P§F12(4,R) + N, p2Py7(q,L) +
25

NN, - Dp2S, dq) + chspchc(q)] (74)

with:
in(gR
S.la) = FuaRvig.L) = 1 (75)
and
2
sin(gR)

S.(q) = w(g,L)? [—qR—} (76)
The scattering mass is: My; = p, + N p., where p, is the total excess
scattering length of a single chain.

For non-penetrating chains and R >> R, the form factor is approxi-
mately given by Eq. (74) with R in Eqgs. (75,76) replaced R + R, in the
sin(x)/x terms. (R, is the root-mean-square radius of gyration of a chain.)

(26) Ellipsoid with Gaussian chains attached

An ellipsoid of revolution is considered with radius R, eccentricity &,
and total excess scattering length p, with NV, chains of contour length L
and total excess scattering length p,.. The form factor is [57]:

1
Pys(q) = _—Mg [P?Fg(q,R) +N,p2Py;(q,L) +
6

NN, - 1)p2 S¢%(q) + 2NcpspeS§ff(q)] 77)

with:
i inlgr(R &,0)]
Selq) = w(g,L) I Filg,r(R,e,0)] %)—Sma do. (78)
0 L]
and
" [sinlgr@®e.l |
I _ 9 sm|qrL,E,0 .
Seig) = wig,L,b) {[ arR.e.0) }smada (79)

where r(R,e,a) = R(sina + €2 cos?0)Y2 and My = p, + N_p, is the total
scattering mass.
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For non-penetrating chains and R and Re >> R, the form factor is
approximately given by Eq. (77) with r(R,e,0) in Eqs. (78,79) replaced
by r(R,e,0) + R, in the sin(x)/x terms.

(27) Cylinder with Gaussian chains attached

A cylinder is considered with radius R, length L, ;, and total excess
scattering length p,,, with N, chains of contour length L and total excess
scattering length p,. The form factor is [57]:

-

Py(q) = [nglFfl(q,R) + N, p2P1(q,L) +

NN, = 1p? S2ta) + 2N ppeyi SFHa) | (80)

S

7

with:

S9g) = w(g,L) x
(81)

n/2 2B(gRsin) sin[(gL /2]
J‘ 1(q ) sin((gLcoso) /2] 2B(gRsina) cos{(gL coso)/2] sina do

0 gRsino (gL cosa)/2)

and
n/2
2
SH(q) =g, Lb)? | {2By(¢R sina) cod(gL cosa)/2]] sina do (82)
0

The scattering mass is: My; = p.y; + Np,.

For non-penetrating chains and R and L >> R,, the form factor is
approximately given by Eq. (80) with R replaced by R + R, and L
replaced by L + 2R, in the B(x) cos(y) terms in Egs. (81,82).

3.2. Structure factors

There are only very few cases for which the structure factor can be
calculated analytically. Most of the available results have been obtained
from liquid state theory for particles with spherical symmetry interact-
ing with a spherically symmetric potential. The liquid state theory
combines the Ornstein—-Zernike integral equation with an approximate
closure relation that relates the interaction potential to the direct
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correlation function (see e.g. Ref. [60]). If the equations cannot be solved
analytically, it is possible to obtain numerical results for the structure
factor. In this case a closure relation can be chosen which gives thermo-
dynamically self-consistent results [61,62].

(1) Hard-sphere potential

The particles interact with the hard-sphere radius Ry and have a
hard-sphere volume fraction m. The expressions for S(g) have been
calculated with the Percus—Yevick approximation for the closure rela-
tion (see e.g. [63]):

1
1+ 24NG(Rysq) /(Ryg q)

Si(@) = (83)

In this equation:

G(A) = a(sin A — A cos A)/A?
+ B(24 sinA + (2 — A?) cosA — 2/A3 (84)
+ y[—A‘* cosA + 4{(3A% - 6) cosA + (A% - 6A) sinA + 6}] /A’

and

o= (1+2n)% /(1 -n*

B=—-6n(1+n/2)% /(1 -n) (85)

y=na/2

(2) Sticky hard-sphere potential

The model was introduced by Baxter [64]. The particles have a
hard-sphere radius Ryg and a delta function attractive potential at the
surface. The stickiness of the particles is given by the parameter 1. The
expressions for the structure factor can be calculated with the Percus—
Yevick approximation for the closure relation (see for example, [65,66]).
For a hard-sphere volume fraction n and k = 2qRyg

1
Sy(qQ) AT B (86)
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where

B (sin K — X oS K) (1-cosx) A sink
A_1+12n{a 3 +B 2 12« }
and

3 (k?/2 - x sin k + 1 — cos ¥) (k-sink) A (1-cosx)
B =121 {oc 3 +B 2 12 .
Furthermore,

A=Min{6lt/n +1/(1 - 1)) + {36[t/n +1/(1 -]}

u=2am(l-n)

1+2n-
oo ( (w; _ﬂn)zu) (87)
5= (=30 + )

2(1 —1)?

(3) Screened Coulomb potential
The particle interaction is described by the hard-sphere radius Ry
and an interaction potential given by:

CpZ?  expl-x(r — 2Ryg))
(1 +%Ryg)? r

Vir) (88)

for r > 2Ry;s. Cg = e*/(4ne), where € is the permittivity of the solvent, e
the elementary charge, Z the number of charges per particle, and x is
the inverse Debye—Hiickel length.

The structure factor has been calculated in the Mean-Spherical
Approximation (MSA) and the expressions can be found in Ref. [67]. The
results work well for high to medium concentrations, but the pair
correlation function becomes unphysical for low concentrations. A better
result is obtained by a rescaling of the hard-sphere radius as described
by Hansen and Hayter [68]. This procedure is known as the Rescaled
MSA (RMSA).
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It is also possible to obtain structure factors from thermodynamically
self-consistent approaches [60,61,69]. However, these have the problem
that the integral equations have to be solved numerically (and itera-
tively) and this makes the applications quite time consuming.

(4) Hard-sphere potential, polydisperse system

Vrij [70] has given a solution for polydisperse hard spheres for an
arbitrary size distribution. It is relatively straight forward to implement
it in a computer program, as it only requires the calculation of certain
averages of products of form factors and trigonometric functions weighted
by the size distribution. The expressions can be found in the paper by Vrij.

(5) Sticky hard-sphere potential, polydisperse system

A solution within the Percus—Yevick approximation has been given
by Robertus, Phillipse, Joosten and Levine [71]. This solution is for
arbitrary size distributions. In order to obtain the solution a set of
equations quadratic in the parameters have to be solved numerically.

(6) Screened Coulomb potential, polydisperse system

The solution in the MSA has been given by Blum and Hoye [72] and
Blum [73]. Ruiz-Estrada, Medina-Noyola and Néngele [74] have given
a procedure for making a computer implementation using the rescaled
mean-spherical approximation.

The implementation of a thermodynamically self-consistent (numeri-
cal) approach based on the closure relation of Rogers and Young [61] has
been described by D’Aguanno and Klein [60,75].

(7) Cylinders

The scattering can be calculated in the random phase approximation
(RPA) [76]. The structure factor for cylinders of length L and radius R,
with L >> R is [77]:

do@)) _ o _ Pul@
( a2 l =P VP (@) ®

where v is proportional to the concentration of the cylinders, p,,; is the
total scattering length of a cylinder, and n is the number density.

(8) Solutions of polymers
The scattering can be calculated in the random phase approximation
(RPA). The structure factor is [76,78]:
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do@) o  Pu@
[ dQ l‘ e 1+ vP1(@)) (50)

where v is proportional to the polymer mass concentration, to the
contour length and to the strength of the excluded volume interaction.
p. is the total scattering length of a chain. The RPA is only a good
approximation for high polymer concentrations. At lower concentrations,
it can be recommended to use Eq. (90) with P,,(g) replaced by P,4(g), and
with the parameters normalized, so that Eq. (90) gives the forward
scattering (intensity at ¢ = 0) and the correlation length predicted by
renormalization group theory [79].

4. An application: block copolymer micelles

In this section an example of an application is given. It involves both
indirect Fourier transformation, square-root deconvolution, modeling,
and least-squares optimization of a model. Both neutron and X-ray
small-angle scattering (SANS/SAXS) data are discussed.

The example concerns a block copolymer in a solvent. It is a tri-block
and consists of two end blocks of poly(ethylene oxide) (PEQO) and a
central block of poly(propylene oxide) (PPO). The composition is
EOy5PO,(EO,5; and the molecular weight is 4500 Da. The molecular
weights are 2300 Da for the PPO part and 1100 Da for each of the PEO
parts. The polymer is commercially available from Serva AG, Heidel-
berg, Germany, under the name P85.

The aggregation behavior of P85 in water has been studied by SANS
[69,80] and SAXS [81]. The P85 is present as single chains at low tempera-
tures (T' < 5°C) and forms aggregates/micelles at higher temperatures. This
behavior is ascribed to the properties of PPO, which is hydrophilic at room
temperatures and becomes hydrophobic at higher temperatures. The
PEO is reasonably soluble for temperatures up to T'= 70°C. The present
discussion is limited to the dilute region with well-defined micelles,
where the structure factor effects are small.

Measurements on a 0.5% wt. solution at T'= 50°C were performed at
the SANS instrument at Risg National Laboratory [82]. In order to
enhance the contrast and reduce the incoherent background, D,O was
used as the solvent. SAXS data have been recorded for a 1% wt. solution
T =50°C by a conventional Kratky camera (see, e.g. Ref. [82]) by Glatter
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Fig. 1. The small-angle neutron scattering data of 0.5% P85 in D,O (upper data) [59].
The curve is the fit by the analytical model including polydispersity of the micelles. Note
that the fitted curve is discontinuous where the data from different settings overlap due
to the instrumental smearing. The lower data are SAXS results on similar micelles [81].
The curve is calculated for the results determined by fitting the SANS data.

et al. [81]. The SAXS data were corrected for instrumental smearing
effects in connection with an indirect Fourier transformation as de-
scribed in Section 2. The desmeared SAXS scattering curve is shown in
Fig. 1 together with the SANS data. Note that the SANS data have been
recorded using three different instrumental settings. Due to the differ-
ent smearing effects for the different settings, the data do not coincide
in the overlap regions.

The SANS and SAXS scattering curves are remarkably different. The
SANS data have a smooth decrease with increasing g and resemble the
scattering form factor of a sphere. However, no oscillations are observed
(c.f. Eq. (55)). A g2 scattering is observed at large ¢, which is similar to
the scattering from flexible chains obeying Gaussian statistics (c.f. Eq.
(70)). In contrast to the the SAXS data have large oscillations. The range
of scattering vectors is not large enough to identify power law scattering
at large q.

An indirect Fourier transformation of the data sets have been per-
formed [57,81], and the resulting distance distribution functions are
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Fig. 2. (a) Distance distribution functions for the data shown in Fig. 1. The full curve is
for the SANS data [57] and the broken curve is for the SAXS data [81]. (b) Excess
scattering length density distributions for the data shown in (a). The notation is the
same as in (a).
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shown in Fig. 2(a). Corrections for instrumental resolution effects were
included as described in Section 2.1. For the SANS data the file scale
factors were also adjusted. The SANS p(r) function has a bell shape with
maximum at 55 A and a tail at larger r, which extends up to about 140
A. The shape is characteristic for homogeneous almost spherical parti-
cles. In contrast to the neutron p(r) function, the SAXS p(r) function has
maximum around 90 A and a much more asymmetric triangular shape,
which is characteristic for spherical shell shapes. Thus, the neutrons
‘see’ a homogeneous particle, whereas the X-rays ‘see’ a shell. This can
be explained by the quite different interaction of X-rays and neutrons
with matter. The neutrons are interacting with the nuclei, whereas
X-rays are interacting with the electrons. For neutrons the scattering
length of hydrogen and deuterium is quite different and the contrast is
provided by the difference in deuterium density. It turns out that the
polymer has a scattering length density close to zero whereas D,0O has
a large scattering length density: the scattering is basically from the
‘holes’ made by the polymer in the D,O. For X-rays the contrast is due
to the difference in electron density. Organic polymers have electron
densities which are quite close to the electron density of water. There-
fore, the contrasts are very sensitive to the actual value of the specific
volume of the polymer. It seems reasonable from the p(r) functions alone
to assume that the specific volumes are so that mainly a shell of
dissolved PEO chains is probed. Accurate density measurements [83] as
a function of temperature for a series of PEO-PPO-PEO block copoly-
mers can be used for calculating the specific volumes of PEO and PPO
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parts. Such calculations [59] show that the contrast of the PPO is small
and negative, whereas the contrast of the PEO is larger and positive.
This confirms that it is mainly the PEO which is observed in SAXS. The
presence of dissolved PEO chains are also supported by the observed g2
behavior at large ¢ in the SANS data. If a model should be constructed
from the available information, it should consist of a homogeneous and
spherical PPO core and a shell of dissolved PEO chains.

The p(r) functions indicate that the particles have an approximate
spherical symmetry and the oscillations in the SAXS scattering curve
show that the size polydispersity is small. It is therefore reasonable to
apply the square-root deconvolution procedure to the p(r) functions [4,5].
In this procedure the excess scattering length density distribution Ap(r)
is parameterized by a set of step functions. The p(r) is calculated from
Ap(r) and least-squares fitted to the p(r) function from the indirect
Fourier transformation. A smoothness constraint is applied and the
coefficients in the parameterization are optimized by non-linear least-
squares methods. The resulting Ap(r) functions are shown in Fig. 2(b).
The function for the SANS data shows the expected high density core
and a lower density shell. The function for the SAXS data also shows
the expected behavior with a small negative value in the core and a
larger positive value in the shell region. This is in perfect agreement
with the calculated contrasts. Note that the size of the core agrees quite
well for the two Ap(r) functions, but that the functions do not go to zero
at the same r value. The disagreement at large r is probably explained
by the fact that the neutrons are not very sensitive to the low concen-
tration part of the shell with the PEO chains.

The information from the model-independent approaches suggests
that the form factor given by Eq. (74), for a particle with spherical core
and Gaussian chains attached to the surface, is appropriate to use for
fitting the data. The number of fitting parameters in the model is quite
large and in order to reduce it, some of the parameters were estimated
from other measurements. The excess scattering length densities were
calculated from the composition of the P85 triblock copolymer and the
specific volumes, which can be derived from density measurements [83].
The contour length of the PEO chains were calculated to be 90 A using
the parameters given by Flory [85] and Aharoni [84].

The inter-particle interference effects are quite small for the low
concentrations (0.5—-1% wt.), but as the chains extend into the solvent,
they are not completely negligible. Therefore, the inter-micellar effects
were included in the analysis of the data using a hard-sphere structure
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factor (Eq. (83)). As the conditions for the SANS and SAXS measure-
ments are not identical, it was not attempted to fit the two data sets
simultaneously. Instead a strategy was chosen, in which only the SANS
data were fitted and the results were used for calculating a SAXS
scattering curve which was compared to the recorded data.

The theoretical scattering curve was smeared by the instrumental
resolution function [23], when the fit to the SANS data was performed.
For each setting the appropriate resolution function was used. The
fitting was carried out as described in Section 2.2 by combining grid
searches with more advanced procedures.

It turns out that the oscillations in the model form factor are too
pronounced compared to the experimental scattering curve. Therefore,
size polydispersity of the micelles was included using a Schulz distribu-
tion for the aggregation number. Note that similar distributions are
predicted by thermodynamic equilibrium theories for surfactant
micelles [86,87]. In a first attempt the core was assumed to be consti-
tuted solely by the PPO parts of the chains. The distance from the
surface of the core to the starting points of the Gaussian chains was a
fitting parameter.

The polydisperse model fits the scattering data reasonably well. The
main deviations are in the region where there is a crossover in the
scattering data to the g2 behavior. In order to achieve perfect agreement
in this region it was necessary to include a low density PEO shell around
the core in accordance with the suggestion by Mortensen and Pedersen
[80]. It should be noted that the excluded volume interaction between
the chains is not included in the model. As the concentration of chains
is quite large at the surface, it is likely that the region closest to the PPO
core is more homogeneous than the region further away.

For a model with a PPO core with a low density shell of PEO and
dissolved PEO chains, the average aggregation number was Nz, = 74
which corresponds to a radius of the PPO core of R = 40 A. The additional
shell contains 23% of the PEO chains with a water content of 77%. The
outer radius of this shell is 49 A. The Kuhn length is determined to be
b = 10 A, which agrees well with previous estimates [84]. The starting
point for the PEO chains is 0.25 x R, away from the surface of the PEO
core shell. The polydispersity of the aggregation number is 6(IV,,,)/N, age
= 0.37, where 6(IV,,,) is the standard deviation of the Schultz distribu-
tion. The corresponding polydispersity of the radius of the core is 6(RV/R
= 0.13. This relatively large polydispersity could explain why the shear-
induced single crystal BCC phase observed at higher concentration
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possesses only angular order and not positional order [88].

The corresponding scattering intensity of the resulting model for
X-rays was calculated and is shown in Fig. 1. The model intensity curve
reproduces the pronounced oscillation close to ¢ = 0.1 A~! in the meas-
ured data and a reasonable qualitative agreement is obtained.

The analysis described in the present section demonstrates the
various steps in a typical analysis. The model-independent methods
were used for obtaining information on the shape of the micelles and
identifying the different components of the structure. A model was
constructed from the available information and fitted to the data using
least-squares methods. Detailed structural information was obtained on
the micellar structure from the analysis.

5. Summary and conclusions

Analysis of small-angle scattering data for colloidal systems consist-
ing of particles or polymers in a solvent has been discussed. Only
systems with short range correlations have been considered. Systems
with long-range order have sharp Bragg reflections, which can be
resolution limited, and the analysis of the data can be quite different
from the analysis described in the previous section. In the cases where
the system possesses order similar to that of a single crystal, the
orientation of the sample also has to be considered. A complete descrip-
tion of the three-dimensional scattering geometry is required and this
is quite complicated [89].

A typical data analysis involves both a step with model-independent
analysis and a step in which a model on analytical form is fitted to the
data. The model-independent step can be an indirect Fourier transfor-
mation that involves linear least-squares fitting. In some cases it can be
supplemented by a square-root deconvolution which gives the scattering
length density profile. The square-root deconvolution requires the ap-
plication of non-linear methods. A model may be constructed based on
the information obtained from the model-independent approaches, but
any additional available information on the systems should also be
considered. An example of an application of the model-independent
approaches and of model fitting was given in the previous section.

The indirect Fourier transformation [1] described in Section 2.1
concerns the three-dimensional distance distribution function, and it is
best suited for particles with shapes that are not too anisotropic.
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However, a similar approach can be applied for obtaining cross-section
distance distribution functions for particles with large anisotropies
[2,90]. For infinitely long rods and infinitely large two-dimensional
planar structures the scattering from the overall dimension and the
cross-section separate. This means the scattering can be written as the
product of a power law and a Fourier transform of the cross-section
distance distribution function. For rods the power law is g~! and the
basis function in the Fourier transform are zeroth order Bessel func-
tions. For planar structures, the power law is g2 and the basis functions
are cosines. If the cross-section structure has centro symmetry, it is
possible to apply the square-root deconvolution procedure and obtain
the cross-section excess scattering length density distribution {4,5]. An
example with an application to planar structures has been given by
Maurer, Glatter and Hofer [91]. In this study the cross-section structure
of large lipid vesicles was determined by SAXS. Applications to rod-like
particles have been described by Schurtenberger, Jerke, Cavaco, and
Pedersen [92]. The cross-section structure of inverse lecithin micelles
with a small core of H,O and D,O in deuterated cyclohexane was
determined by SANS. The water and lecithin distributions were deter-
mined from the difference between the scattering length distribution of
the particles with H,O and D,0O.

The fact that the scattering from the cross-section and the scattering
from the large dimension(s) separate for particles with large anisot-
ropies can also be used for extending the available form factors. For
planar structure one has, if the cross-section dimension is small com-
pared to the overall size:

P(q) = P(g) P,(q) 91)

where P(q)’ is the form factor of an infinitely thin shell describing the
overall shape of the object and:

P.(q)= lJApcs(r) cos(gr)dr 2 (92)

where Ap.{r) is the centro symmetric cross-section scattering length
density distribution function. P(q) can be the form factor of an infinitely
thin spherical shell, elliptical shell, cylinder shell, or disk.

For particles with a local rod-like structure, the scattering can also
be written using an expression like Eq. (91), if the overall dimension is
large compared to the cross-section dimension. In this case
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P,(q) = |2n [ Ap.y(r) 2Bo(gryr dr|” 93)

where Ap,{r) is again the centro symmetric cross-section scattering
length density distribution function. P(q)’ can be the form factor of an
infinitely thin rod (Eq. (66)) or a semi-flexible polymer chain with or
without excluded volume interactions [51,93].

The construction of a model cross section may be a tedious job. First
the most important features of the structure have to be identified, so
that a model structure can be formed. But occasionally, analytical
expressions are not available for the scattering cross section of the model
structure and it is necessary to construct them or calculate them. This
was the case for the P85 micelles described in the previous section. When
analytical expressions are derived, it is often convenient to use Monte
Carlo simulations [94] for checking the analytical expressions as it was
done for the P85 micelles [59]. In some cases it may be impossible to
obtain analytical expressions as it is for semi-flexible polymers. If
scattering functions are available, for example, from computer simula-
tions for a large range of parameters, the scattering functions can be
parameterized and interpolated, so that they can be used for least-
squares fitting [51,53,93].

When fitting experimental data, it is not unusual that the informa-
tion content of a data set is quite low. The parameters of the model are
then very correlated and when physical parameters like the mass
density are calculated from the fit parameters it may give unphysical
values. Such problems can be greatly reduced if the data are on an
absolute scale and the molecular properties of the constituting mole-
cules are taken into account in the model as constraints. If the densities
are known from other types of measurements this information can be
included and unphysical solutions can be avoided. The information
content of the data can also be enhanced by measuring for several
different contrasts, or by measuring the samples by both X-ray and
neutron scattering. For neutrons the contrast variation can be done by
varying the deuterated fraction of the solvent. If the particles have
components with different composition, the contrast variation will pro-
vide additional information. The combination of X-ray and neutron
scattering is in some cases very efficient ([95], see also previous section).
This is the case for surfactant systems with heavy atoms in the head
group, for which the X-ray scattering is almost entirely from the head
group region, where as the micelles appear to be homogeneous for
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neutron scattering in D,0O. The extra information from contrast vari-
ation is most efficiently taken into account if the data from different
contrasts are fitted simultaneously. In this case the same parameters
for the geometry can be used and only the scattering length densities
depend on which contrast is considered.
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